- Ahmed, M.A., & Mohamed, A.A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 174, 280-288. http://dx.doi.org/10.1016/j.chemosphere.2017.01.147
- Ajibade, P.A., & Nnadozie, E.C. (2020). Synthesis and Structural Studies of Manganese Ferrite and Zinc Ferrite Nanocomposites and Their Use as Photoadsorbents for Indigo Carmine and Methylene Blue Dyes. ACS Omega, 5. 32386-32394. https://dx.doi.org/10.1021/acsomega.0c04404
- Arenas, C.N., Vasco, A., Betancur, M., Martínez, J.D. (2017). Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA). Process Safety and Environmental Protection, 106, 224-238. http://dx.doi.org/10.1016/j.psep.2017.01.013
- Asaduzzaman, Md, Hasan, N., Begum, K., Hoque, S.M.Z. (2024). Degradation kinetics of lycopene from red amaranth & preparation of winter melon jelly using this lycopene and comparison with commercial jelly. Heliyon, 10, e31135. https://doi.org/10.1016/j.heliyon.2024.e31135
- Azizia, E., Darsanja, A., Zakeric, H., Ghayebzadehd, M., Heidaripoure, Z. (2020). A study of the variations of oxidation-reduction potential, pH, and dissolved oxygen during photo-Fenton oxidation of methyl tert-butyl ether in the presence of a nanosized zero-valent iron particle, hydrogen peroxide, and ultraviolet radiation. Desalination and Water Treatment, 196, 238-246. https://doi.org/10.5004/dwt.2020.26044
- Barka, N., Abdennouri, M., Boussaoud, A., Galadi, A., Baaˆlala, M., Bensitel, M., Sahibed-Dine, A., Nohair, K., Sadiq, M. (2014). Full factorial experimental design applied to oxalic acid photocatalytic degradation in TiO2 aqueous suspensión. Arabian Journal of Chemistry, 7, 752-757. https://doi.org/10.1016/j.arabjc.2010.12.015
- Bernal, M., Romero, R., Roa, G., Barrera, C.D., Torres, T.B., Natividad, R. (2013). Ozonation of índigo carmine catalyzed wIth Fe-pillared clay. International Journal of Photoenergy, 1, 1-7: https://dx.doi.org/10.1155/ 2013918025
- Bhardwaj, D., Sharma, M., Sharma, P., Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater,227-228, 292-300. https://doi.org/10.1016/j.jhazmat.2012.05.058
- Biblioteca, I., SambuccI, M., Valente, M., (2023). Zeolite-Clinoptilolite conditioning for improved heavy metals ions removal: A preliminary assessment. Ceramics International, 49, 39649-39656. https://doi.org/10.1016/j.ceramint.2023.09.319
- Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608-633. http://dx.doi.org/10.1016/j.cej.2017.03.084
- Castro-Peña, L., & Durán-Herrera, J. (2014). Degradation and decoloration of contaminated water with textile dyes using advanced oxidation processes. Tecnología en Marcha. 27(2), 40-50
- Cosme-Torres, I., Macedo-Miranda, M.G., Martínez-Gallegos, S.M., González-Juárez, J.C.,
- Roa-Morales, G., Illescas-Martínez, F.J., Jiménez-Becerril J. (2020). Synthesis of HTCMgFe for the degradation of indigo carmine through heterogeneous photo-Fenton treatment. MRS Advances, 5, 3273-3282. https://doi.org/10.1557/adv.2020.421
- Elhalil, A., Tounsandi, H., Elmoubarki, R., Mahjoubi, F.Z., Farnane, M., Sadiq, M., Abdennouri, M., Qourzal, S., Barka, S. (2016). Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process. Water Resources and Industry, 15, 41-48. https://doi.org/10.1016/j.wri.2016.07.002
- Gagol, M., Przyjazny, A., Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation - A review. Chemical Engineering Journal, 338, 599-627. https://doi.org/10.1016/j.cej.2018.01.049
- Ganiyu, S.O., Hullebusch, E.D., Cretin, M., Esposito, G., Oturan, M.A. (2015). Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separation and Purification Technology, 156, 891-914. https://doi.org/10.1016/j.seppur.2015.09.059
- Genázio, P.C., Valoura, R.R., Pavesi, T., Mendes, E.S., Costa, J.M., Veríssimo, F.C. (2017). Lethal and sub-lethal evaluation of Indigo Carmine dye and by products after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms. Ecotoxicology and Environmental Safety, 143, 275-282. http://dx.doi.org/10.1016/j.ecoenv.2017.05.043
- Gonzales-Condori, E.G., Avalos-López, G., Gonzales-Condori, J., Mujica-Guzmán, A., Terán-Hilares, R., Briceño, G., Quispe-Avilés, J.M., Parra-Ocampo, P.J., Villanueva-Salas, J.A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química, 22 (3), IA2370. https://doi.org/10.24275/rmiq/IA2370
- Hadi, M.D., Karimi, B., Sadege, M.R. (2016). The effect of aeration on advanced coagulation, flotation and advanced oxidation processes for color removal from wastewater. Journal of Molecular Liquids, 223, 75-80. http://dx.doi.org/10.1016/j.molliq.2016.08.019
- Hernández-Gordillo, A., Rodríguez-González, V., Oros-Ruiz, S., Gómez, R. (2016). Photodegradation of Indigo Carmine dye by CdS nanostructures under blue-light irradiation emitted by LEDs. Catalysis Today, 266, 27-35. http://dx.doi.org/10.1016/j.cattod.2015.09.001
- Huy, B.T., Paeng, D.S., Thao, C.T.B., Phuong, N.T.K., Yong-Ill, L. (2020). ZnO Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light. Arabian Journal of Chemistry, 13, 3490-3800. http://dx.doi.org/10.1016/j.arabjc.2019.01.003
- Javaid. R., & Qazi, U.Y. (2019) Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. International Journal of Environmental Research and Public Health, 16, 2066. http://dx.doi:10.3390/ijerph16112066
- Kasiri, M.B., Aleboyeh, H., Aleboyeh, A. (2008). Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 84, 9-15. http://dx.doi.org/10.1016/j.apcatb.2008.02.024
- Khataee, A., Gholami, P., Vahid, B. (2016). Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye. Ultrasonics Sonochemistry, 29, 213-225. http://dx.doi.org/10.1016/j.ultsonch.2015.09.012
- Leal-Perez, J.E., Almaral-Sanchez, J.L., Hurtado-Macias, A., Cortez-Valadez, M., Bórquez-Mendívil, A., García-Grajeda, B.A., Mendivil-Escalante, J.M., Flores-Valenzuela, J. (2024).Structural and chemical analysis of Zn ion exchange in thermally modified zeolite A4. Revista Mexicana de Ingeniería Química, 23(3), Mat24264. https://doi.org/10.24275/rmiq/Mat24264
- Mendes, E., Sousa, A., Forsin, D., de Paiva, D., Pavesi, T., Jimenez, M., Maldonado, M., Vieira, L., Costa, J. (2015). Photo-decolorization and ecotoxicological effects of solar compound parabolic collector pilot plant and artificial light photocatalysis of indigo carmine dye. Dyes and Pigments, 113, 571-580. http://dx.doi.org/10.1016/j.dyepig.2014.09.029
- Muhammad, R., Al-Muqati, N.S., Schulz, Axel., Alessa, A., Al-Otabi, Raja., Osman, A.I., Al-Fatesh, A.S. (2024). Temperature-Induced Modifications in Natural Zeolite Clinoptilolite: Effects on Acidity and Catalytic Acetalization. ChemNanoMat, 10, e202400041. https://doi.org/10.1002/cnma.202400041
- Paukshtis, E.A., Yaranova, M.A., Batueva, I.S., Bal'zhinimaev, B.S., (2019). A FTIR study of silanol nests over mesoporous silicate materials. Microporous and Mesoporous Materials, 288, 109582. https://doi.org/10.1016/j.micromeso.2019.109582
- Phan, T.T.N., Nikoloski, A.N., Bahri, P.A., Li, D. (2018). Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light. Journal of Industrial and Engineering Chemistry, 61, 53-64. http://dx.doi.org/10.1016/j.jiec.2017.11.046
- Pérez González N. K., Díaz Guzmán D., Vargas Ramírez M., Legorreta García F., Chávez Urbiola E.A., Trujillo Villanueva L.E., Ramírez Cardona, M. (2024). Interzeolite conversion of a clinoptilolite-rich natural zeolite into merlinoite. Sociedad española de cerámica y vidrio, 63, 279-293. https://doi.org/10.1016/j.bsecv.2024.04.001
- Quadrado, R.F.N., & Fajardo, A.R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177, 443-450. http://dx.doi.org/10.1016/j.carbpol.2017.08.083
- Reyes-Pérez, J.A., Roa-Morales, G., De León-Condes, C.A., Balderas-Hernández, P. (2023). Nanocomposites from spent coffee grounds and iron/zinc oxide: green synthesis, characterization, and application in textile wastewater treatment. Water Science & Technology, 88 (6). 1547-1563. https://doi.org/10.2166/wst.2023.285
- Samara, F., Hamid, A.A.A., Gopal, V., Dronjak, L., Feghaly, F., Kanan, S. (2025). Modified Zeolites for the Removal of Emerging Bio-Resistive Pollutants in Water Resources. Catalysts, 15(2),138. https://doi.org/10.3390/catal15020138
- Sirajudheen, P., &Meenakshi, S. (2019). Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. International Journal of Biological Macromolecules, 133, 253-261. http://dx.doi.org/10.1016/j.ijbiomac.2019.04.073
- Yaman, C., & Gündüz, G. (2015). A parametric study on the decolorization and mineralization of C.I. Reactive Red 141 in water by heterogeneous Fenton-like oxidation over FeZSM-5 zeolite. Journal of Environmental Health Science & Engineering, 13(7), 2-12. http://dx.doi.org/10.1186/s40201-015-0162-6
- Yordanova, I., Hristov, S., Kolev, H., Todorova, S., Naydenov, A. (2023). Cobalt manganese ion-exchanged clinoptilolite supported catalysts for n-hexane oxidation. Catalysis Today, 423, 114267. https://doi.org/10.1016/j.cattod.2023.114267
- Vázquez-Romero, M., Abril-González, M., Pinos-Vélez, V., García-Zumalacarregui, J., Maldonado-Carchi, D., Miranda-Morales, D. (2024). Fenton process by volcanic ash to eliminate aniline of aqueous solution from the dyeing of toquilla straw crafts. Revista Mexicana de Ingeniería Química, 23(2), Cat24238. https://doi.org/10.24275/rmiq/Cat24238
- Zhu, F., Lu, G.P., Wang, F., Ren, E., Yu, Y., Lin, Y. (2023). Iron catalyzed organic reactions
- in water: A “Nature-Like” Synthesis. Current Opinion in Green and Sustainable. Chemistry, 40, 100754. https://doi.org/10.1016/j.cogsc.2023.100754
|