Vol. 24, No. 2 (2025), IA25552 https://doi.org/10.24275/rmiq/IA25552


Association of pyocyanin and LED red-light irradiation (700 nm) on the biodegradation of waste lube oil


 

Authors

H. Borchardt, R. Leite, A.A.P. Mendes, I.P.G. Amaral, U. Vasconcelos


Abstract

Billions of liters of Waste Lube Oil (WLO) are produced every year and affect the environment. Pseudomonas aeruginosa is a versatile bacterium that can be used in processes to remove pollutants from the environment. Its bioactive pyocyanin (PYO) is a blue pigment with multiple cellular functions including a role in the assimilation of hydrocarbons. This study assessed the association of pyocyanin and LED light irradiation (700±10 nm) in the reduction of WLO by P. aeruginosa TGC04. Microcosms containing 45 mL of mineral medium combined with 5% WLO (v/v) were added to 5 mL of P. aeruginosa TGC04, suspended in 0,9% saline solution, adjusting the turbidity to Optical Density (OD) 0.4 at 600 nm, and different concentrations of PYO (0.1; 1.0 and 10.0 µg/mL). The microcosms were incubated at 29±1°C for 30 days under continuous LED light irradiation (700±10 nm). Control was carried out in the dark. WLO reduction was calculated by gravimetric method. Abiotic losses (≈ 10%) were determined with uninoculated microcosms. Light stimulated the inoculum, reducing the WLO from 17 to 55%. The process was PYO concentration-dependent and significantly influenced by the inoculum. There was an important correlation between PYO and WLO degradation by P. aeruginosa TGC04. In contrast, the interactions between light irradiation and PYO, as well as light irradiation alone, were insignificant possibly due to photoinactivation. These results highlight the biotechnological applicability of P. aeruginosa metabolites for ex situ bioremediation.


Keywords

Bioremediation, Oil hydrocarbons, Pseudomonas aeruginosa, Bioactive pigments.


References

  • Al-Ansari. Influence of blue light on effective removal of arsenic by photosynthetic bacterium Rhodobacter sp. BT18 (2022). Chemosphere 292, 133399, https://www.doi.org/10.1016/j.chemosphere.2021.133399
  • Almutairi, M.S. Determination of total petroleum hydrocarbons (TPHs) in weathered oil contaminated soil (2022). Environmental Engineering Research 27, 5. https://doi.org/10.4491/eer.2021.324
  • ASTM (2017). D1298-12b. Standard test method for density, relative density, or API gravity of crude petroleum and liquid petroleum products by hydrometer method. New York, USA.
  • ASTM (2023). D874-23. Standard test method for sulfated ash from lubricating oils and additives. New York, USA.
  • Bacosa, H.P., Erdner, D.L., Liu, Z. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. (2015a). Marine Pollution Bulletin 95, 265-272. https://doi.org/10.1016/j.marpolbul.2015.04.005  
  • Bacosa, H.P., Liu, Z., Erdner, D.L. Natural sunlight shapes crude oil-degrading bacteria communities in northern Gulf of Mexico surface waters (2015b). Frontiers of Microbiology 6, 1325. https://doi.org/10.3389/fmicb.2015.01325
  • Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., and Haghi, F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. (2017). Journal of Global Antimicrobial Resistance 10, 21-28. https://doi.org/10.1016/j.jgar.2017.03.006
  • Beattie, G.A., Hatfield, B.M., Dong, H., Mcgrane, R.S. Seeing the light: The roles of red-and blue-light sensing in plant microbes (2018). Annual Review of Phytopathology 56, 41-66. https://doi.org/10.1146/annurev-phyto-080417-045931
  • Benguenab, A., Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil (2021). Acta Ecologica Sinica 41, 416-423. https://doi.org/10.1016/j.chnaes.2020.10.008
  • Cavalcanti, T.G., Souza, A.F., Ferreira, G.F., Dias, D.S.B., Severino, L.S., Morais, J.P.S., Sousa, K.A., Vasconcelos, U. (2019). Use of agroindustrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste & Biomass Valorization 10, 205-214. https://doi.org/10.1007/s12649-017-0041-8
  • Centler, F., Günnigmann, S., Fetzer, I., Wendeber, A. Keystone species and modularity in microbial hydrocarbon degradation uncovered by network analysis and association rule mining. (2020). Microorganisms 8, 190. https://doi.org/10.3390/microorganisms8020190   
  • Crugeira, P.J.L., Santos, G.M.P., Oliveira, S.C.P.S., Sampaio, F.J.P., Correia, N.A., Fagnani, S.R.C.A., Chinalia, F.A., Almeida, P.F., Pinheiro, A.L.B. Photobiological effect of Laser or LED light in a thermophilic microbial consortium (2018). Journal of Photochemistry and Photobiology B: Biology 181,115-121. https://doi.org/10.1016/j.jphotobiol.2018.03.006
  • Crugeira, P.J.L., Santos, G.M.P., Oliveira, S.C.P.S., Sampaio, F.J.P., Fagnani, S.R.C.A., Sampaio, I.C.F., Ferreira, E.S., Chinalia, F.A. Pinheiro, A.L.B. Effects of photostimulation on the catabolic process of xenobiotics (2019). Journal of Photochemistry and Photobiology B: Biology 191, 38-43. https://doi.org/10.1016/j.jphotobiol.2018.12.004
  • Das, S., Das, P. Effects of cultivation media components on biosurfactant and pigment production from Pseudomonas aeruginosa (2015). Brazilian Journal of Chemical Engineering 32, 317–324. https://doi.org/10.1590/0104-6632.20150322s00003262
  • Das, P., Ma, L.Z. Pyocyanin pigment assisting biosurfactant-mediated hydrocarbon emulsification (2013). International Biodeterioration & Biodegradation 85, 278-283. https://doi.org/10.1016/j.ibiod.2013.07.013
  • Dasgupta, D., Ghosh, R., Sengupta, T.K. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species (2013). International Scholarly Research Network 5, 250749. https://doi.org/10.5402/2013/250749
  • Deng, Y., Wen, J., Zhu, X., Chen, N., Feng, C., Zheng, Y., Wang, H., Chen, F., Guo, Y. Research on the redox behavior changes of humic-like substances wastewater during electrochemical oxidation process and using the treated effluent to improve the heavily contaminated soil: Taking petroleum hydrocarbon contaminated soil as example (2020). Journal of Cleaner Production 263,1213998. https://doi.org/10.1016/j.jclepro.2020.121398 10.1016/j.jclepro.2020.121398
  • El-Fouly, M.Z., Sharaf, A.M., Shain, A.A.M., El-Bialy, H.A., Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa (2015). Journal of Radiation Research and Applied Science 8, 36–48. https://doi.org/10.1016/j.jrras.2014.10.007  
  • Elahi, Y., Baker, M.A.B. Light control in microbial systems (2024). International Journal of Molecular Sciences 25, 4001. https://doi.org/10.3390/ijms25074001
  • Frena, M., Oliveira, C.R., Silva, C.A., Madureira, L.A.S., Azevedo, D.A. Photochemical degradation of diesel oil in water: a comparative study of different photochemical oxidation processes and their degradation by-products. (2014). Journal of the Brazilian Chemical Society 25, 1372-1379. https://doi.org/10.5935/0103-5053.20140119
  • Ghannam, M.T.; Selim, M.Y.E.; Khedr, M.A.M.; Bin Taleb, N.A.G.; Kaalan, N.R. Investigation of the rheological properties of waste and pure lube oil (2021). Fuel 298, 120774. https://doi.org/10.1016.j.fuel.2021.120774
  • Guo, Z., Kodikara, D., Albi, L.S., Hatano, Y., Chen, G., Yoshimura, C., Wang, J. Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes (2023). Water Research 231, 118236. https://doi.org/10.1016/j.watres.2022.118236
  • Hu, F., Wang, P., Li, Y., Ling, J., Ruan, Y., Yu, J., Zhang, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges (2023). Environmental Research 15, 117211. https://doi.org/10.1016/j.envres.2023.117211
  • Imam, A., Suman, S.K., Kanaujia, P.K., Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review (2022). Bioresource Technology 343, 126121. https://doi.org/10.1016/j.biortech.2021.126121
  • Ishaya, S., Usman, S., Nweke, O.D., Adams, N.H., Umar, R., Ilyasu, N.S., Jagaba, A.H., Atangwho, I.J., Yakasai, H.M. Degradation of used engine oil by Alcaligenes sp.strain isolated from oil contaminated site: Isolation, identification, and optimization of the growth parameters (2023). Case Studies in Chemical and Environmental Engineering 8, 100516. https://doi.org/10.1016/j.cscee.2023.100516
  • Jabłońska, J., Augustyniak, A., Dubrowska, K., Rakoczy, R. The two faces of pyocyanin – why and how to steer its production? (2023). World Journal of Microbiology and Biotechnology 39, 103. https://doi.org/10.1007/s11274-023-03548-w   
  • Jose, D., Mohandas, A., Singh, I.S.B. A non-pathogenic environmental isolate of Pseudomonas aeruginosa MCCB 123 with biotechnological potential. (2018). International Journal of Current Microbiology and Applied Sciences 7, 3060-3071. https://doi.org/10.20546/ijcmas.2018.701.363
  • Kaing, V., Guo, Z., Sok, T., Kodikara, D., Breider, F., Yoshimura, C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges (2024). Science of the Total Environment 911, 168539. https://doi.org/10.1016/j.scitotenv.2023.168539
  • Khan, N.T. Pseudomonas aeruginosa in industries. (2022). Journal of Pharmaceutical Sciences and Drug Development 4, 1-2. https://doi.org/10.37532/jpsdd.22.4.2.1-2
  • Koley, D., Ramsey, M.M., Bard, A.J., Whiteley, M. Discovery of biofilm electrocline using real-time 3D metabolite analysis (2011). PNAS 108, 50. https://doi.org/10.1073/pnas.1117298108
  • Meirelles, L.A., Newman, D.K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa (2018). Molecular Microbiology 110, 995-1010. https://doi.org/10.1111/mmi.14132
  • Mojsoska, B., Ghoul, M., Perron, G.G., Jenssen, H., Alatraktchi, F.A.A. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics (2021). PLoS One 16, e0248014. https://doi.org/10.1371/journal.pone.0248014
  • Mudaliar, S.B., Prasad, A.S.B. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges (2024). World Journal of Microbiology and Biotechnology 40, 90. https://doi.org/10.1007/s11274-03889-0
  • Muthukumar, B., Surya, S., Sivakumar, K., Alsalhi, M.S., Rao, T.N., Devanesan, S., Arunkumar, P., Rajasekar, A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon (2023). Chemosphere 310, 136826. https://doi.org/10.1016/j.chemosphere.2022.136826  
  • Norman, R.S., Moeller, P., McDonald, T.J., Morris, P.J. Effect of pyocyanin on a crude-oil-degrading microbial community (2004). Applied and Environmental Microbiology 70, 4004-4011. https://doi.org/10.1128/AEM.70.7.4004-4011.2004
  • Nowak, P., Kucharska, K., Kamiński, M. Ecological and health effects of lubricant oils emitted into the environment (2019). International Journal of Environmental Research and Public Health 20, 3002. https://doi.org/10.3390/ijerph16163002
  • Ojewumi, M.E., Anenih, E.V., Taiwo, O.S., Adekeye, B.T., Awolu, O.O., Ojewumi, E.O. A bioremediation study of raw and treated crude petroleum oil polluted soil with Aspergillus niger and Pseudomonas aeruginosa (2018). Journal of Ecological Engineering 19, 226-235. https://doi.org/10.12911/22998993/83564
  • Palittapongarnpim, M., Pokethitiyook, P., Upatham, E.S., Tangbanluekal, L. Biodegradation of crude oil by soil microorganisms in the tropic (1998). Biodegradation 9, 83-90. https://doi.org/10.1023/a:1008272303740
  • Parsons, J.F., Greenhagen, B.T., Shi, K., Calabrese, K., Robinson, H., Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa (2007). Biochemistry 46, 1821-1828. https://doi.org/10.1021/bi6024403
  • Peraza-Liñan, D.L., Ayíl-Gutiérrez, B.A., Urías-Salazar, A.A., López-Santillán, J.A., Estrada-Drouaillet, B., Segura-Martínez, M.T.J., Poot-Poot, W.A. Biodegradation of crude oil by Aspergillus tubingensis: biosurfactant-producing strain (2025). Revista Mexicana de Inginería Quimica 24, 1-11. https://doi.org/10.24275/rmiq/Bio24332
  • Peruzzo, R., Corrà, S., Costa, R., Brischigliaro, M., Varanita, T., Biasutto, L., Szabò, I. Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction (2021). Nature Communications 12, 2103. https://doi.org/10.1038/s41467-021-22062-x
  • Pierson, L.S., Pierson, E.A. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes (2010). Applied Microbiology and Biotechnology 86, 1659-1670. https://doi.org/10.1007/s00253-010-2509-3
  • Raţiu, S., Josan, A., Alexa, V., Cioată, V.G., Kiss, I. Impact of contaminants on engine oil: A review (2021). Journal of Physics: Conference Series 1781, 012051. https://doi.org/10.1088/1742-6596/1781/1/012051
  • Rayaroth, M.P., Marchel, M., Boczkaj, G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons–A review (2023). Science of The Total Environment 857, 159043. https://doi.org/10.1016/j.scitotenv.2022.159043
  • Reszka, K.J., O’Malley, Y., McCormick, M.L., Denning, G.M., Britigan, B.E. oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. (2004). Free Radical Biology & Medicine 36, 1448-1459. https://doi.org/10.1016/j.freeradbiomed.2004.03.011  
  • Reszka, K.J., Denning, G.M., Britigan, B.E. photosensitized oxidation and inactivation of pyocyanin, a virulence factor of Pseudomonas aeruginosa. (2006). Photochemistry and Photobiology 82, 466-473. https://doi.org/10.1562/2005-07-29-RA-626
  • Rodríguez-Recio, F.R., Garza-Cervantes, J.A., Balderas-Cisneros, F.J., Morones-Ramírez, J.R. Genomic insights into and lytic potential of native bacteriophages M8-2 and M8-3 against clinically relevant multidrug-resistant Pseudomonas aeruginosa (2025). Antibiotics 14, 110. https://doi.org/10.3390/antibiotics14020110
  • Ruiz-Hernandez, I.H., Madrigal-Perez, L.A., González-Hernández, J.C. The potential use of Pseudomonas aeruginosa in terrestrial and space agriculture. (2024). Brazilian Journal of Biology 84, e282664. https://doi.org/10.1590/1519-6984.282664
  • Saini, M., Das, S.K., Kumar, D., Dutt, G., Singh, K.K., Prakash, D. The correlation between redox activity and antimicrobial properties of pyocyanin from Pseudomonas aeruginosa (2025). bioRxiv. https://doi.org/10.1101/2025.02.17.638708
  • Sarkar, M. Light-responsive biodegradation of wastewater pollutants: New developments and potential perspectives (2023). Journal of Hazardous Materials Advances 10, 100281. https://doi.org/10.1016/j.hazadv.2023.100281
  • Sarker, M.A.R., Ahn, Y-H. Green phytoextracts as natural photosensitizers in LED-based photodynamic disinfection of multidrug-resistant bacteria in wastewater effluent (2022). Chemosphere 297, 134157. https://doi.org/10.1016/j.chemosphere.2022.134157
  • Saucedo-Martínez, B.C., Benavides, L.M., Sánchez-Yañez, J.M. In the biostimulation of soil impacted by hydrocarbons the detergent emulsifies them the elimination depends on microorganisms induced by mineral solution (2023). Novel Aspects on Chemistry and Biochemistry 7, 1-12. https://doi.org/10.9734/bpi/nacb/v7/7258A  
  • Sutar, R.S., Barkul, R.P., Delekar, S.D., Patil, M.K. Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites (2020). Arabian Journal of Chemistry 13, 4966-4977. https://doi.org/10.1016/j.arabjc.2020.01.019  
  • Taleshpur, S., Taghavi, L., Farahani, H.F., Rasekh, B., Bazgir, S. Oil pollution removal using g-C3N4/PEG nanocomposite in the presence of bacterial consortium isolated from contaminated areas: optimization Study (2025). International Journal of Environmental Science and Technology 2025, 1-8. https://doi.org/10.1007/s13762-024-06307-y
  • Unglaube, F., Hünemörder, P., Guo, X., Chen, Z., Wang, D., and Mejía, E. Phenazine radical cations as efficient homogeneous and heterogeneous catalysts for the crossdehydrogenative aza-henry reaction. (2020). Helvetica 103, e2000184. https://doi.org/10.1002/hlca.202000184
  • USEPA (2007). Method 8015D. Nonhalogenated organics by gas chromatography/flame ionization detector. Washington, USA.
  • USEPA (2007). Method 8270D. Semivolatile organic compounds by gas chromatography/mass spectrometry. Washington, USA.  
  • Viana, A.A.G., Borchardt, H., Dantas, J.V., Bernardes-Dias, D.S., Gurgel-Amaral, I.P., Vasconcelos, U. Effect of exogenous phenazine addition on crude heavy oil degradation by Pseudomonas aeruginosa TGC04 (2024). Revista Mexicana de Ingeniería Química 23, 1-15. https://doi.or/10.24275/rmiq/IA24251   
  • Viana, A.A.G., Oliveira, B.T.M., Cavalcanti, T.G., Sousa, K.A., Mendonça, E.A.M., Amaral, I.P.G., Vasconcelos, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa (2018). International Journal of Advanced Engineering Research and Science 5, 212-223. https://doi.org/10.22161/ijaers.5.7.28
  • Whooley, M.A., McLoughlin, A.J. The regulation of pyocyanin production in Pseudomonas aeruginosa (1982). European Journal of Applied Microbiology and Biotechnology 15, 161-166. https://doi.org/10.1007/BF00511241
  • Yeh, N., Yeh, P., Shih, N., Byadgi, O., Cheng, T.C. Applications of light-emitting diodes in researches conducted in aquatic environment (2014). Renewable and Sustainable Energy Reviews 32, 611–618. https://doi.org/10.1016/j.rser.2014.01.047
  • Zhang, H., Lu, Y., Li, Y., Wang, C., Yu, Y., Zhang, W., Wang, L., Niu, L., Zhang, C. Propelling the practical application of the intimate coupling of photocatalysis and biodegradation system: system amelioration, environmental influences and analytical strategies (2022). Chemosphere 287, 132196.  https://doi.org/10.1016/j.chemosphere.2021.132196
  • Zhang, Y., Zhuang, H. Effectiveness of low-intensity ultrasound on anaerobic bioaugmentation of phenolic wastewater: Model optimization and system stabilization (2024). Bioresource Technology 406,130980. https://doi.org/10.1016/j.biortech.2024.130980