- Al-Ansari. Influence of blue light on effective removal of arsenic by photosynthetic bacterium Rhodobacter sp. BT18 (2022). Chemosphere 292, 133399, https://www.doi.org/10.1016/j.chemosphere.2021.133399
- Almutairi, M.S. Determination of total petroleum hydrocarbons (TPHs) in weathered oil contaminated soil (2022). Environmental Engineering Research 27, 5. https://doi.org/10.4491/eer.2021.324
- ASTM (2017). D1298-12b. Standard test method for density, relative density, or API gravity of crude petroleum and liquid petroleum products by hydrometer method. New York, USA.
- ASTM (2023). D874-23. Standard test method for sulfated ash from lubricating oils and additives. New York, USA.
- Bacosa, H.P., Erdner, D.L., Liu, Z. Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. (2015a). Marine Pollution Bulletin 95, 265-272. https://doi.org/10.1016/j.marpolbul.2015.04.005
- Bacosa, H.P., Liu, Z., Erdner, D.L. Natural sunlight shapes crude oil-degrading bacteria communities in northern Gulf of Mexico surface waters (2015b). Frontiers of Microbiology 6, 1325. https://doi.org/10.3389/fmicb.2015.01325
- Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., and Haghi, F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. (2017). Journal of Global Antimicrobial Resistance 10, 21-28. https://doi.org/10.1016/j.jgar.2017.03.006
- Beattie, G.A., Hatfield, B.M., Dong, H., Mcgrane, R.S. Seeing the light: The roles of red-and blue-light sensing in plant microbes (2018). Annual Review of Phytopathology 56, 41-66. https://doi.org/10.1146/annurev-phyto-080417-045931
- Benguenab, A., Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil (2021). Acta Ecologica Sinica 41, 416-423. https://doi.org/10.1016/j.chnaes.2020.10.008
- Cavalcanti, T.G., Souza, A.F., Ferreira, G.F., Dias, D.S.B., Severino, L.S., Morais, J.P.S., Sousa, K.A., Vasconcelos, U. (2019). Use of agroindustrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste & Biomass Valorization 10, 205-214. https://doi.org/10.1007/s12649-017-0041-8
- Centler, F., Günnigmann, S., Fetzer, I., Wendeber, A. Keystone species and modularity in microbial hydrocarbon degradation uncovered by network analysis and association rule mining. (2020). Microorganisms 8, 190. https://doi.org/10.3390/microorganisms8020190
- Crugeira, P.J.L., Santos, G.M.P., Oliveira, S.C.P.S., Sampaio, F.J.P., Correia, N.A., Fagnani, S.R.C.A., Chinalia, F.A., Almeida, P.F., Pinheiro, A.L.B. Photobiological effect of Laser or LED light in a thermophilic microbial consortium (2018). Journal of Photochemistry and Photobiology B: Biology 181,115-121. https://doi.org/10.1016/j.jphotobiol.2018.03.006
- Crugeira, P.J.L., Santos, G.M.P., Oliveira, S.C.P.S., Sampaio, F.J.P., Fagnani, S.R.C.A., Sampaio, I.C.F., Ferreira, E.S., Chinalia, F.A. Pinheiro, A.L.B. Effects of photostimulation on the catabolic process of xenobiotics (2019). Journal of Photochemistry and Photobiology B: Biology 191, 38-43. https://doi.org/10.1016/j.jphotobiol.2018.12.004
- Das, S., Das, P. Effects of cultivation media components on biosurfactant and pigment production from Pseudomonas aeruginosa (2015). Brazilian Journal of Chemical Engineering 32, 317–324. https://doi.org/10.1590/0104-6632.20150322s00003262
- Das, P., Ma, L.Z. Pyocyanin pigment assisting biosurfactant-mediated hydrocarbon emulsification (2013). International Biodeterioration & Biodegradation 85, 278-283. https://doi.org/10.1016/j.ibiod.2013.07.013
- Dasgupta, D., Ghosh, R., Sengupta, T.K. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species (2013). International Scholarly Research Network 5, 250749. https://doi.org/10.5402/2013/250749
- Deng, Y., Wen, J., Zhu, X., Chen, N., Feng, C., Zheng, Y., Wang, H., Chen, F., Guo, Y. Research on the redox behavior changes of humic-like substances wastewater during electrochemical oxidation process and using the treated effluent to improve the heavily contaminated soil: Taking petroleum hydrocarbon contaminated soil as example (2020). Journal of Cleaner Production 263,1213998. https://doi.org/10.1016/j.jclepro.2020.121398 10.1016/j.jclepro.2020.121398
- El-Fouly, M.Z., Sharaf, A.M., Shain, A.A.M., El-Bialy, H.A., Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa (2015). Journal of Radiation Research and Applied Science 8, 36–48. https://doi.org/10.1016/j.jrras.2014.10.007
- Elahi, Y., Baker, M.A.B. Light control in microbial systems (2024). International Journal of Molecular Sciences 25, 4001. https://doi.org/10.3390/ijms25074001
- Frena, M., Oliveira, C.R., Silva, C.A., Madureira, L.A.S., Azevedo, D.A. Photochemical degradation of diesel oil in water: a comparative study of different photochemical oxidation processes and their degradation by-products. (2014). Journal of the Brazilian Chemical Society 25, 1372-1379. https://doi.org/10.5935/0103-5053.20140119
- Ghannam, M.T.; Selim, M.Y.E.; Khedr, M.A.M.; Bin Taleb, N.A.G.; Kaalan, N.R. Investigation of the rheological properties of waste and pure lube oil (2021). Fuel 298, 120774. https://doi.org/10.1016.j.fuel.2021.120774
- Guo, Z., Kodikara, D., Albi, L.S., Hatano, Y., Chen, G., Yoshimura, C., Wang, J. Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes (2023). Water Research 231, 118236. https://doi.org/10.1016/j.watres.2022.118236
- Hu, F., Wang, P., Li, Y., Ling, J., Ruan, Y., Yu, J., Zhang, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges (2023). Environmental Research 15, 117211. https://doi.org/10.1016/j.envres.2023.117211
- Imam, A., Suman, S.K., Kanaujia, P.K., Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review (2022). Bioresource Technology 343, 126121. https://doi.org/10.1016/j.biortech.2021.126121
- Ishaya, S., Usman, S., Nweke, O.D., Adams, N.H., Umar, R., Ilyasu, N.S., Jagaba, A.H., Atangwho, I.J., Yakasai, H.M. Degradation of used engine oil by Alcaligenes sp.strain isolated from oil contaminated site: Isolation, identification, and optimization of the growth parameters (2023). Case Studies in Chemical and Environmental Engineering 8, 100516. https://doi.org/10.1016/j.cscee.2023.100516
- Jabłońska, J., Augustyniak, A., Dubrowska, K., Rakoczy, R. The two faces of pyocyanin – why and how to steer its production? (2023). World Journal of Microbiology and Biotechnology 39, 103. https://doi.org/10.1007/s11274-023-03548-w
- Jose, D., Mohandas, A., Singh, I.S.B. A non-pathogenic environmental isolate of Pseudomonas aeruginosa MCCB 123 with biotechnological potential. (2018). International Journal of Current Microbiology and Applied Sciences 7, 3060-3071. https://doi.org/10.20546/ijcmas.2018.701.363
- Kaing, V., Guo, Z., Sok, T., Kodikara, D., Breider, F., Yoshimura, C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges (2024). Science of the Total Environment 911, 168539. https://doi.org/10.1016/j.scitotenv.2023.168539
- Khan, N.T. Pseudomonas aeruginosa in industries. (2022). Journal of Pharmaceutical Sciences and Drug Development 4, 1-2. https://doi.org/10.37532/jpsdd.22.4.2.1-2
- Koley, D., Ramsey, M.M., Bard, A.J., Whiteley, M. Discovery of biofilm electrocline using real-time 3D metabolite analysis (2011). PNAS 108, 50. https://doi.org/10.1073/pnas.1117298108
- Meirelles, L.A., Newman, D.K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa (2018). Molecular Microbiology 110, 995-1010. https://doi.org/10.1111/mmi.14132
- Mojsoska, B., Ghoul, M., Perron, G.G., Jenssen, H., Alatraktchi, F.A.A. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics (2021). PLoS One 16, e0248014. https://doi.org/10.1371/journal.pone.0248014
- Mudaliar, S.B., Prasad, A.S.B. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges (2024). World Journal of Microbiology and Biotechnology 40, 90. https://doi.org/10.1007/s11274-03889-0
- Muthukumar, B., Surya, S., Sivakumar, K., Alsalhi, M.S., Rao, T.N., Devanesan, S., Arunkumar, P., Rajasekar, A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon (2023). Chemosphere 310, 136826. https://doi.org/10.1016/j.chemosphere.2022.136826
- Norman, R.S., Moeller, P., McDonald, T.J., Morris, P.J. Effect of pyocyanin on a crude-oil-degrading microbial community (2004). Applied and Environmental Microbiology 70, 4004-4011. https://doi.org/10.1128/AEM.70.7.4004-4011.2004
- Nowak, P., Kucharska, K., Kamiński, M. Ecological and health effects of lubricant oils emitted into the environment (2019). International Journal of Environmental Research and Public Health 20, 3002. https://doi.org/10.3390/ijerph16163002
- Ojewumi, M.E., Anenih, E.V., Taiwo, O.S., Adekeye, B.T., Awolu, O.O., Ojewumi, E.O. A bioremediation study of raw and treated crude petroleum oil polluted soil with Aspergillus niger and Pseudomonas aeruginosa (2018). Journal of Ecological Engineering 19, 226-235. https://doi.org/10.12911/22998993/83564
- Palittapongarnpim, M., Pokethitiyook, P., Upatham, E.S., Tangbanluekal, L. Biodegradation of crude oil by soil microorganisms in the tropic (1998). Biodegradation 9, 83-90. https://doi.org/10.1023/a:1008272303740
- Parsons, J.F., Greenhagen, B.T., Shi, K., Calabrese, K., Robinson, H., Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa (2007). Biochemistry 46, 1821-1828. https://doi.org/10.1021/bi6024403
- Peraza-Liñan, D.L., Ayíl-Gutiérrez, B.A., Urías-Salazar, A.A., López-Santillán, J.A., Estrada-Drouaillet, B., Segura-Martínez, M.T.J., Poot-Poot, W.A. Biodegradation of crude oil by Aspergillus tubingensis: biosurfactant-producing strain (2025). Revista Mexicana de Inginería Quimica 24, 1-11. https://doi.org/10.24275/rmiq/Bio24332
- Peruzzo, R., Corrà, S., Costa, R., Brischigliaro, M., Varanita, T., Biasutto, L., Szabò, I. Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction (2021). Nature Communications 12, 2103. https://doi.org/10.1038/s41467-021-22062-x
- Pierson, L.S., Pierson, E.A. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes (2010). Applied Microbiology and Biotechnology 86, 1659-1670. https://doi.org/10.1007/s00253-010-2509-3
- Raţiu, S., Josan, A., Alexa, V., Cioată, V.G., Kiss, I. Impact of contaminants on engine oil: A review (2021). Journal of Physics: Conference Series 1781, 012051. https://doi.org/10.1088/1742-6596/1781/1/012051
- Rayaroth, M.P., Marchel, M., Boczkaj, G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons–A review (2023). Science of The Total Environment 857, 159043. https://doi.org/10.1016/j.scitotenv.2022.159043
- Reszka, K.J., O’Malley, Y., McCormick, M.L., Denning, G.M., Britigan, B.E. oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. (2004). Free Radical Biology & Medicine 36, 1448-1459. https://doi.org/10.1016/j.freeradbiomed.2004.03.011
- Reszka, K.J., Denning, G.M., Britigan, B.E. photosensitized oxidation and inactivation of pyocyanin, a virulence factor of Pseudomonas aeruginosa. (2006). Photochemistry and Photobiology 82, 466-473. https://doi.org/10.1562/2005-07-29-RA-626
- Rodríguez-Recio, F.R., Garza-Cervantes, J.A., Balderas-Cisneros, F.J., Morones-Ramírez, J.R. Genomic insights into and lytic potential of native bacteriophages M8-2 and M8-3 against clinically relevant multidrug-resistant Pseudomonas aeruginosa (2025). Antibiotics 14, 110. https://doi.org/10.3390/antibiotics14020110
- Ruiz-Hernandez, I.H., Madrigal-Perez, L.A., González-Hernández, J.C. The potential use of Pseudomonas aeruginosa in terrestrial and space agriculture. (2024). Brazilian Journal of Biology 84, e282664. https://doi.org/10.1590/1519-6984.282664
- Saini, M., Das, S.K., Kumar, D., Dutt, G., Singh, K.K., Prakash, D. The correlation between redox activity and antimicrobial properties of pyocyanin from Pseudomonas aeruginosa (2025). bioRxiv. https://doi.org/10.1101/2025.02.17.638708
- Sarkar, M. Light-responsive biodegradation of wastewater pollutants: New developments and potential perspectives (2023). Journal of Hazardous Materials Advances 10, 100281. https://doi.org/10.1016/j.hazadv.2023.100281
- Sarker, M.A.R., Ahn, Y-H. Green phytoextracts as natural photosensitizers in LED-based photodynamic disinfection of multidrug-resistant bacteria in wastewater effluent (2022). Chemosphere 297, 134157. https://doi.org/10.1016/j.chemosphere.2022.134157
- Saucedo-Martínez, B.C., Benavides, L.M., Sánchez-Yañez, J.M. In the biostimulation of soil impacted by hydrocarbons the detergent emulsifies them the elimination depends on microorganisms induced by mineral solution (2023). Novel Aspects on Chemistry and Biochemistry 7, 1-12. https://doi.org/10.9734/bpi/nacb/v7/7258A
- Sutar, R.S., Barkul, R.P., Delekar, S.D., Patil, M.K. Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites (2020). Arabian Journal of Chemistry 13, 4966-4977. https://doi.org/10.1016/j.arabjc.2020.01.019
- Taleshpur, S., Taghavi, L., Farahani, H.F., Rasekh, B., Bazgir, S. Oil pollution removal using g-C3N4/PEG nanocomposite in the presence of bacterial consortium isolated from contaminated areas: optimization Study (2025). International Journal of Environmental Science and Technology 2025, 1-8. https://doi.org/10.1007/s13762-024-06307-y
- Unglaube, F., Hünemörder, P., Guo, X., Chen, Z., Wang, D., and Mejía, E. Phenazine radical cations as efficient homogeneous and heterogeneous catalysts for the crossdehydrogenative aza-henry reaction. (2020). Helvetica 103, e2000184. https://doi.org/10.1002/hlca.202000184
- USEPA (2007). Method 8015D. Nonhalogenated organics by gas chromatography/flame ionization detector. Washington, USA.
- USEPA (2007). Method 8270D. Semivolatile organic compounds by gas chromatography/mass spectrometry. Washington, USA.
- Viana, A.A.G., Borchardt, H., Dantas, J.V., Bernardes-Dias, D.S., Gurgel-Amaral, I.P., Vasconcelos, U. Effect of exogenous phenazine addition on crude heavy oil degradation by Pseudomonas aeruginosa TGC04 (2024). Revista Mexicana de Ingeniería Química 23, 1-15. https://doi.or/10.24275/rmiq/IA24251
- Viana, A.A.G., Oliveira, B.T.M., Cavalcanti, T.G., Sousa, K.A., Mendonça, E.A.M., Amaral, I.P.G., Vasconcelos, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa (2018). International Journal of Advanced Engineering Research and Science 5, 212-223. https://doi.org/10.22161/ijaers.5.7.28
- Whooley, M.A., McLoughlin, A.J. The regulation of pyocyanin production in Pseudomonas aeruginosa (1982). European Journal of Applied Microbiology and Biotechnology 15, 161-166. https://doi.org/10.1007/BF00511241
- Yeh, N., Yeh, P., Shih, N., Byadgi, O., Cheng, T.C. Applications of light-emitting diodes in researches conducted in aquatic environment (2014). Renewable and Sustainable Energy Reviews 32, 611–618. https://doi.org/10.1016/j.rser.2014.01.047
- Zhang, H., Lu, Y., Li, Y., Wang, C., Yu, Y., Zhang, W., Wang, L., Niu, L., Zhang, C. Propelling the practical application of the intimate coupling of photocatalysis and biodegradation system: system amelioration, environmental influences and analytical strategies (2022). Chemosphere 287, 132196. https://doi.org/10.1016/j.chemosphere.2021.132196
- Zhang, Y., Zhuang, H. Effectiveness of low-intensity ultrasound on anaerobic bioaugmentation of phenolic wastewater: Model optimization and system stabilization (2024). Bioresource Technology 406,130980. https://doi.org/10.1016/j.biortech.2024.130980
|