Vol. 24, No. 2 (2025), IE25411 https://doi.org/10.24275/rmiq/IE25411


Numerical and experimental study of air heating solar collector constructed of aluminum tube pipes


 

Authors

A. López-López, I.A. García-Montalvo, S. Sandoval-Torres, E. Hernández-Bautista


Abstract

A model was developed to simulate an air heating solar collector. A 3D geometry was proposed, consisting of nine rectangular aluminum tubes and a rectangular space between the glass cover (GC) where air flows. The spatial distribution of air velocity was simulated using a Reynolds-Averaged Navier-Stokes κ-ε model, in steady state, to calculate the heat transfer coefficients. The energy balances in transient state were performed in the GC, aluminum absorber plate (AP) and in the fluid. The energy balance considers the heat transfer in the fluid by convection, conduction and surface radiation between the AP-GC. The energy balance in the AP used a lumped analysis and considered the heat loss due to convection between the AP and fluid and heat source due to solar radiation considering transmissivity and absorptivity. The model was used to simulate different inlet velocities. The transfer coefficients in the tubes were higher and therefore the temperature, compared to the space between GC and AP. Besides, it was found that there is an increase in outlet temperature with increasing air velocity.


Keywords

Heat transfer coefficient; Interior no slip condition; Transient analysis; Turbulent flow; Surface to surface radiation.


References

  • Alleyne, F. S., Milczarek R.R. (2015). Design of Solar Thermal Dryers for 24-Hour Food Drying. Pp. 0-3 en Proceedings of the 2015 COMSOL.
  • Al-Tabbakh, A. A. (2022). Numerical Transient Modeling of a Flat Plate Solar Collector. Results in Engineering 15:100580. doi: 10.1016/j.rineng.2022.100580.
  • Azeez, K., Riyadh I. A., Zain A. O., Itimad D. J. A. (2023). Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review. Journal of Thermal Engineering 9(5):1356-71. doi: 10.18186/thermal.1377246.
  • Bakari, R. (2018). Heat transfer optimization in air flat plate solar collectors integrated with baffles. Journal of Power and Energy Engineering 06(01):70-84. doi: 10.4236/jpee.2018.61006.
  • Bakari, R., Rwaichi J. A. M., Karoli N. N. (2014). Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Journal of Energy 2014:1-8. doi: 10.1155/2014/247287.
  • Bensaci, C. E., Abdelhafid M., Sánchez de la Flor F.J., Rodríguez Jara E., Rincón-Casado, A., Ruiz-Pardo A. (2020). Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions. Renewable Energy 155:1231-44. doi: 10.1016/j.renene.2020.04.017.
  • Bolaji, B. O. (2012). Theoretical and Experimental Analyses of Heat Transfer in a Flat-Plate Solar Collector Design and Performance Evaluation of a Mobile Cooler Refrigerator Retrofitted with R134a View project Evaluation of Water-Extract from Fermented Ground Maize for its Potentials as Coolants for Engine and Machining Operations View project. doi: 10.2004/wjst.v9i3.227.
  • Gopi, R., Ponnusamy P., Fantin Arokiaraj A., Raji A. (2020). Performance comparison of flat plate collectors in solar air heater by theoretical and computational method. Materials Today: Proceedings, 39, 823-826.
  • Jallut, C., Jemni A., Lallemand M. (1988). Steady-state and dynamic characterization of an array of air flat-plate collectors. Solar & Wind Technology 5(5):573-79. doi: 10.1016/0741-983X(88)90049-5.
  • Kramer, K., Mehnert S., Geimer K., Reinhardt M., Fahr S., Thoma C., Kovacs P., Ollas P. (2017). Guide to standard ISO 9806:2017 a resource for manufacturers, testing laboratories, certification bodies and regulatory agencies. doi: 10.13140/RG.2.2.30241.30562.
  • Kumar, P., Singh D. (2020). Advanced technologies and performance investigations of solar dryers: A review. Renewable Energy Focus 35:148-58. doi: 10.1016/j.ref.2020.10.003.
  • Lingayat, A. B., Chandramohan V. P., Raju V. R. K., Meda V. (2020). A review on indirect type solar dryers for agricultural crops-Dryer setup, its performance, energy storage and important highlights. Applied Energy 258.
  • Mahroug, I., Doppiu S., Dauvergne J.L., Echeverria M., Toutain J., Palomo del Barrio E. (2021). Study of peritectic compound Li4(OH)3Br for high temperature thermal energy storage in solar power applications. Solar Energy Materials and Solar Cells 230. doi: 10.1016/j.solmat.2021.111259.
  • Matsumoto, Y., Valdés M., Urbano J.A., Kobayashi T., López G., Peña R. (2014). Global solar irradiation in north Mexico city and some comparisons with the south. Energy Procedia. Vol. 57. 1179-88.
  • Messina, S., González F., Saldaña C., Peña-Sandoval G.R., Tadeo H., Juárez-Rosete C.R., Nair P. K. (2022). Solar powered dryers in agricultural produce processing for sustainable rural development worldwide: A case study from Nayarit-Mexico. Cleaner and Circular Bioeconomy 3:100027. doi: 10.1016/j.clcb.2022.100027.
  • Mohana, Y., Mohanapriya R., Anukiruthika T., Yoha K. S., Moses J. A., Anandharamakrishnan C. (2020). Solar dryers for food applications: Concepts, designs, and recent advances. Solar Energy 208:321-44.
  • Mota, F. A. S., Furtado A. S. S., Leitao A. B. V., Medeiros N. C., Pereira G. S., Almeida M. N., Oliveira A., Oliveira M. M., Caselli F. T. R. (2025). Obtention of Methyl Esters Fractions through Distillation and Pour Point Evaluation of the Obtained Fractions. Revista Mexicana de Ingeniería Química 24(1). https://doi.org/10.24275/rmiq/IE24221
  • Ndukwu, M. C., Ibeh M., Okon B.B., Akpan G., Kalu C. A., Ekop I., Nwachukwu C.C., Abam F. I., Lamrani B., Simo-Tagne M., Ben A.E., Mbanasor J., Bennamoun L. (2023). Progressive review of solar drying studies of agricultural products with exergoeconomics and econo-market participation aspect. Cleaner Environmental Systems 9.
  • Rajarajeswari, K., Alok P., Sreekumar A. (2018). Simulation and experimental investigation of fluid flow in porous and non-porous solar air heaters. Solar Energy 171:258-70. doi: 10.1016/j.solener.2018.06.079.
  • Rani, P., Tripathy P. P. (2020). Thermal characteristics of a flat plate solar collector: influence of air mass flow rate and correlation analysis among process parameters. Solar Energy 211:464-77. doi: 10.1016/j.solener.2020.08.057.
  • Ranmode, V., Manmeet S., Bhattacharya J. (2019). Analytical formulation of effective heat transfer coefficient and extension of lumped capacitance method to simplify the analysis of packed bed storage systems. Solar Energy 183:606-18. doi: 10.1016/j.solener.2019.03.066.
  • Romero-Bonilla, H. I.; Jaramillo-Guanolique, A., Zambrano, C., Rios-Hidalgo, M., Solano-Maza, L., Choez-Tobo, C. (2025).  Cocoa shell biochars for sustainable biodiesel production in Ecuador. Revista Mexicana de Ingeniería Química 24 (1). https://doi.org/10.24275/rmiq/IE24221
  • Rouissi, W., Naili N., Jarray M., Hazami M. (2021). CFD numerical investigation of a new solar flat air-collector having different obstacles with various configurations and arrangements. Mathematical Problems in Engineering 2021. doi: 10.1155/2021/9991808.
  • Shahsavari, A., Akbari M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews 90:275-91.
  • Tiwari, R., Mishra K., Nath G. (2011). Advanced renewable energy sources. Advanced Renewable Energy Sources. Vol. 1. 45-109.
  • Vivekanandan, M., Jagadeesh D., Natarajan A., Mohan N., Dineshkumar M. (2020). Experimental and CFD investigation of fully developed flow solar air heater. Materials Today: Proceedings. Vol. 37. 2158-63.
  • Xiao, S., Zhang Y., Xia K., Long J. (2022). Influence of operating conditions on solar energy utilization efficiency of flat plate solar collector. Renewables: Wind, Water, and Solar 9(1). doi: 10.1186/s40807-022-00070-9.