Vol. 24, No. 2 (2025), IE25513 https://doi.org/10.24275/rmiq/IE25513


Effect of absorber plate material on the performance of flat plate solar air heater under free convection


 

Authors

R.C. Salmorán-Salgado, F. J. Moreno-García, J.E. Botello-Álvarez, B. Ríos-Fuentes, M. Calderón-Ramirez, M.C. Pérez-Pérez, J.M. Gutiérrez-Villalobos, L. Fausto-Castro


Abstract

Solar air heaters (SAH) are an alternative to harness solar energy. In SAH´s, a metal plate absorber retains solar radiation to transfer it to the air. The effect of the plate material: aluminum, galvanized steel and carbon steel and the number of sheets on the thermal efficiency of SAH´s was evaluated, with an experimental design 32. The analysis shows that the material and the number of sheets have no effect on the thermal efficiency of SAH´s. A phenomenological analysis indicates that interfacial heat transport between the black paint film covering the absorber plates, and the air represents the greatest resistance to heat transfer. It is proposed to use covers with better optical properties that increase the surface temperature and the intensity of free convection.


Keywords

Solar energy, absorber plate, coat of paint.


References

  • Calderón-Ramírez, M., Gomez-Náfate, J. A., Ríos-Fuentes, B., Rico-Martínez, R., Martínez-Nolazco, J. J., & Botello-Álvarez, J. E. (2022). Analysis of the thermal efficiency of flat plate solar air heaters considering environmental conditions using artificial neural networks. Revista Mexicana de Ingeniera Quimica, 21(3). https://doi.org/10.24275/rmiq/Sim2833
  • Das, M., & Akpinar, E. K. (2020). Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering, 21. https://doi.org/10.1016/j.csite.2020.100731
  • Green, D. W., & Southard, M. Z. (2019). Perry’s Chemical Engineers’ Handbook.
  • Handoyo, E. A., Ichsani, D., Prabowo, & Sutardi. (2014). Experimental studies on a solar air heater having v-corrugated absorber plate with obstacles bent vertically. Applied Mechanics and Materials, 493, 86–92. https://doi.org/10.4028/www.scientific.net/AMM.493.86
  • Kalogirou, S. (2003). The potential of solar industrial process heat applications. Applied Energy, 76(4), 337–361. https://doi.org/10.1016/S0306-2619(02)00176-9
  • Kong, D., Wang, Y., Li, M., & Liang, J. (2024). A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products. Energy, 293. https://doi.org/10.1016/j.energy.2024.130640
  • Kumar, R., Verma, S. K., Mishra, S. K., Sharma, A., Yadav, A. S., & Sharma, N. (2022). Performance Enhancement of Solar Air Heater using Graphene/Cerium Oxide and Graphene-Black Paint Coating on Roughened Absorber Plate. International Journal of Vehicle Structures and Systems, 14(2), 273–279. https://doi.org/10.4273/IJVSS.14.2.23
  • Ladha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Mapping energy consumption in food manufacturing. In Trends in Food Science and Technology (Vol. 86, pp. 270–280). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2019.02.034
  • Iglesias-Díaz, R., Pantoja-Enriquez, J., Moreira-Acosta, J., Farrera, N., & Ibáñez- Duharte, G. (2011). Diseño de un secador solar con circulación forzada (Vol. 5, Issue 5).
  • Mekhilef, S., Saidur, R., & Safari, A. (2011). A review on solar energy use in industries. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 4, pp. 1777–1790). https://doi.org/10.1016/j.rser.2010.12.018
  • Mohammed, S. A., Alawee, W. H., Chaichan, M. T., Abdul-Zahra, A. S., Fayad, M. A., & Aljuwaya, T. M. (2024). Optimized solar food dryer with varied air heater designs. Case Studies in Thermal Engineering, 53. https://doi.org/10.1016/j.csite.2023.103961
  • Org, E. (1996). Lawrence Berkeley National Laboratory Recent Work Title Impact of the Temperature Dependency of Fiberglass Insulation R-Value of Cooling Energy Use in Building Publication Date.
  • Panas, A. J., Szczepaniak, R., Stryczniewicz, W., & Omen, Ł. (2021). Thermophysical properties of temperature-sensitive paint. Materials, 14(8). https://doi.org/10.3390/ma14082035
  • Pardeshi, P. S., Boulic, M., van Heerden, A. (Hennie), Phipps, R., & Cunningham, C. W. (2024). Review of the thermal efficiency of a tube-type solar air heaters. In Renewable and Sustainable Energy Reviews (Vol. 199). Elsevier Ltd. https://doi.org/10.1016/j.rser.2024.114509
  • Sanjuán, N., Stoessel, F., & Hellweg, S. (2014). Closing data gaps for LCA of food products: Estimating the energy demand of food processing. Environmental Science and Technology, 48(2), 1132–1140. https://doi.org/10.1021/es4033716
  • Schoeneberger, C. A., McMillan, C. A., Kurup, P., Akar, S., Margolis, R., & Masanet, E. (2020). Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States. In Energy (Vol. 206). Elsevier Ltd. https://doi.org/10.1016/j.energy.2020.118083
  • Sidebotham, G. (2015). Nusselt Number Correlations. In Heat Transfer Modeling (pp. 351–375). Springer International Publishing. https://doi.org/10.1007/978-3-319-14514-3_9
  • Singh, I., Vardhan, S., Singh, S. Singh, A. (2019) Experimental and CFD analysis of solar air heater duct roughened with multiple broken transverse ribs: A comparative study. Solar Energy. 188, 519-532.
  • Srivastava, R., Kumar Rai, A., & Kumar Srivastava, R. (2017). A review on solar air heater technology. International Journal of Mechanical Engineering and Technology, 8(7), 1122–1131. lser
  • Welsby, D., Price, J., Pye, S., & Ekins, P. (2021). Unextractable fossil fuels in a 1.5 °C world. Nature, 597(7875), 230–234. https://doi.org/10.1038/s41586-021-03821-8
Yadav, A. S., & Bhagoria, J. L. (2013). Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. In Renewable and Sustainable Energy Reviews (Vol. 23, pp. 60–79). Elsevier Ltd. https://doi.org/10.1016/j.rser.2013.02.035