Vol. 24, No. 2 (2025), Mat25444 https://doi.org/10.24275/rmiq/Mat25444


Molecular dynamics of SDS-coated gold nanoparticles in aqueous medium with Coarse-grained model and MARTINI force field


 

Authors

D.E. Altamirano-Bulnes, E.D. Estrada-López


Abstract

Gold nanoparticles have garnered significant interest in recent years across various fields of study, including materials science, biomedicine, drug delivery design, electronics, and optics, among others. Numerous studies have aimed to visualize their properties by coating them with polymers, proteins, surfactants, and genes to observe and analyze variations in their functioning. With advances in computing, these nanoparticles have been examined using molecular dynamics methodologies to simulate their interactions with different solvents and particles, thereby predicting their behavior in diverse applications. In this research, spherical gold nanoparticle systems with a radius of 1.5 nm, coated with the surfactant sodium dodecyl sulfate (SDS), are investigated in an aqueous medium with varying concentrations utilizing molecular dynamics with a coarse-grained approach and the MARTINI force field to examine energy, structural, transport, and stability aspects properties.


Keywords

metal nanoparticles, active agent, interface, computer simulation, nanomaterials.


References

  • Lee, J. I. E. U. N., Lee, N., Kim, T., Kim, J., & Hyeon, T. (2011). Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. 44(10), 893–902
  • Lu, X., Zhu, T., Chen, C., & Liu, Y. (2014). Right or Left: The Role of Nanoparticles in Pulmonary Diseases. 17577–17600. https://doi.org/10.3390/ijms151017577
  • Mansha, M., Khan, I., Ullah, N., & Qurashi, A. (2017). Synthesis, characterization, and hydrogen evolution reaction of carbazole-containing conjugated polymers. International Journal of Hydrogen Energy, 1–10. https://doi.org/10.1016/j.ijhydene.2017.02.053
  • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 111(27), 7812–7824. https://doi.org/10.1021/jp071097f
  • Marrink, S. J., & Tieleman, D. P. (2013). Perspective on the martini model. Chemical Society Reviews, 42(16), 6801–6822. https://doi.org/10.1039/c3cs60093a
  • Marrink, S. J., Vries, A. H. De, & Mark, A. E. (2004). Coarse Grained Model for Semiquantitative Lipid Simulations. 750–760.
  • Montoya-Villegas, K., Navarro-Félix, R. ., Rejón-Garcia, L., Silva-Carillo, C., Trujillo-Navarrete, B., Lin-Ho, S. ., & Reynoso-Soto, E. . (2020). Synthesis of Au-TiO2 nanoparticles as sensors of 3-mercaptopropionic acid. Revista Mexicana De Ingenieria Quimica, 19(941–952), 97–104.
  • Núñez-Delgado, C., Luna-Flores, A., Conde-Hernández, L. A., Flores-Aquino, E., Romero-López, A., & Tepale, N. (2023). Biosynthesis of gold nanoparticles using the aqueous extract of Hippocratea excelsa root bark. Antioxidant and photocatalytic evaluation. Revista Mexicana De Ingeniería Química, 22(IA2367).
  • Owen, D. M. (2014). Methods in membrane lipids: Second edition. Methods in Membrane Lipids: Second Edition, 1232, 1–327. https://doi.org/10.1007/978-1-4939-1752-5
  • Pizzirusso, A., De Nicola, A., & Milano, G. (2016). MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Journal of Physical Chemistry B, 120(16), 3821–3832. https://doi.org/10.1021/acs.jpcb.6b00646
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open-source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Ramacharyuly, P.V.R.K; Muhammad, Raeesh; Kumar, Praveen J.; Prasad, G. K. (2015). Iron Phthalocyanine Modified Mesoporous Titania Nanoparticles for Photocatalytic Activity and CO2 Capture Applications. https://doi.org/10.1039/C5CP03576G
  • Ramalingam, V. (2019). Multifunctionality of gold nanoparticles: Plausible and convincing properties. Advances in Colloid and Interface Science, 271, 101989. https://doi.org/10.1016/j.cis.2019.101989
  • Rawal, I., & Kaur, A. (2013). Sensors and Actuators A: Physical Synthesis of mesoporous polypyrrole nanowires / nanoparticles for ammonia gas sensing application. Sensors & Actuators: A. Physical, 203, 92–102. https://doi.org/10.1016/j.sna.2013.08.023
  • Shaalan, M., Saleh, M., & El-mahdy, M. (2016). Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 701–710. https://doi.org/10.1016/j.nano.2015.11.005
  • Si, K. J., Chen, Y., Shi, Q., & Cheng, W. (2018). Nanoparticle Superlattices: The Roles of Soft Ligands. https://doi.org/10.1002/advs.201700179
  • Souza, L. M. P., Nascimento, J. B., Romeu, A. L., Estrada-López, E. D., & Pimentel, A. S. (2018). Penetration of antimicrobial peptides in a lung surfactant model. Colloids and Surfaces B: Biointerfaces, 167, 345–353. https://doi.org/10.1016/J.COLSURFB.2018.04.030
  • Taylor, P., Gunsteren, W. F. Van, & Berendsen, H. J. C. (2007). A Leap-frog Algorithm for Stochastic Dynamics A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS. May 2013, 37–41.
  • Vaisey, G., Banerjee, P., North, A. J., Haselwandter, C. A., & Mackinnon, R. (2022). Piezo1 as a force-through-membrane sensor in red blood cells. ELife, 11, 1–21. https://doi.org/10.7554/ELIFE.82621
  • Velasco-Rodríguez, V., Cornejo-Mazon, M., Flores-Flores, J. O., Gutierrez-Lopez, G. F., & Hernandez-Sanchez, H. (2012). Preparation and properties of alpha-lipoic acid-loaded chitosan nanoparticles. Revista Mexicana De Ingenieria Química, 11(1), 155–161.
  • Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P., & Marrink, S. J. (2015). Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. https://doi.org/10.1021/acs.jctc.5b00209
  • Wong, K., Chen, C., Wei, K., Roy, V. A. L., & Chathoth, S. M. (2015). Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. Journal of Nanoparticle Research, 17(3). https://doi.org/10.1007/s11051-015-2965-x
  • Zimbone, M., Calcagno, L., Messina, G., Baeri, P., & Compagnini, G. (2011). Dynamic light scattering and UV-vis spectroscopy of gold nanoparticles solution. Materials Letters, 65(19–20), 2906–2909. https://doi.org/10.1016/j.matlet.2011.06.054