- Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
- Abu Samah, N. H., & Heard, C. M. (2014). The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo. Nanotoxicology, 8(1), 100–106. https://doi.org/10.3109/17435390.2012.754511
- Albaladejo, S., Marqués, M. I., Scheffold, F., & Sáenz, J. J. (2009). Giant enhanced diffusion of gold nanoparticles in optical vortex fields. Nano Letters, 9(10), 3527–3531. https://doi.org/10.1021/nl901745a
- Alexander, S. T. (1986). The Method of Steepest Descent. Adaptive Signal Processing, 46–67. https://doi.org/10.1007/978-1-4612-4978-8_4
- Applications, I. (2017). Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. https://doi.org/10.3390/molecules22091445
- Asish, Pal; Aasheesh, S. S., & Bhattacharya. (2009). Role of Capping Ligands on the Nanoparticles in the Modulation of Properties of a Hybrid Matrix of Nanoparticles in a 2D Film and in a. 9169–9182. https://doi.org/10.1002/chem.200900304
- Baranowska-Korczyc, A., Stelmach, E., Paterczyk, B., Maksymiuk, K., & Michalska, A. (2019). Ultrasmall self-assembly poly (N-isopropylacrylamide-butyl acrylate) (polyNIPAM-BA) thermoresponsive nanoparticles. Journal of Colloid and Interface Science, 542, 317–324. https://doi.org/10.1016/j.jcis.2019.02.004
- Barrak, H., Saied, T., Chevallier, P., Laroche, G., Mnif, A., & Hamzaoui, A. H. (2016). Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2016.04.019
- Baoukina, S., Rozmanov, D., & Tieleman, D. P. (2017). Composition Fluctuations in Lipid Bilayers. Biophysical Journal, 113(12), 2750–2761. https://doi.org/10.1016/j.bpj.2017.10.009
- Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1). https://doi.org/10.1063/1.2408420
- Deshmukh, S., Mooney, D. A., McDermott, T., Kulkarni, S., & Don MacElroy, J. M. (2009). Molecular modeling of thermo-responsive hydrogels: Observation of lower critical solution temperature. Soft Matter, 5(7), 1514–1521. https://doi.org/10.1039/b816443f
- Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184(February), 537–556. https://doi.org/10.1016/j.talanta.2018.02.088
- Estrada-López, E. D., Murce, E., Franca, M. P. P., & Pimentel, A. S. (2017). Prednisolone adsorption on lung surfactant models: Insights on the formation of nanoaggregates, monolayer collapse and prednisolone spreading. RSC Advances, 7(9), 5272–5281. https://doi.org/10.1039/c6ra28422a
- Fitzgerald, G., Dejoannis, J., & Meunier, M. (2015). Multiscale modeling of nanomaterials. In Modeling, Characterization and Production of Nanomaterials: Electronics, Photonics and Energy Applications. Elsevier Ltd. https://doi.org/10.1016/B978-1-78242-228-0.00001-6
- Franco-ulloa, S., Riccardi, L., Rimembrana, F., Grottin, E., Pini, M., & Vivo, M. De. (2022). NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. https://doi.org/10.1021/acs.jctc.2c01029
- Ganesh, M., Hemalatha, P., Peng, M. M., & Jang, H. T. (2013). One pot synthesized Li, Zr doped porous silica nanoparticles for low temperature CO 2 adsorption. ARABIAN JOURNAL OF CHEMISTRY, 2–6. https://doi.org/10.1016/j.arabjc.2013.04.031
- Gupta, R., & Rai, B. (2017). Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study. Scientific Reports, 7(February), 1–13. https://doi.org/10.1038/srep45292
- Harding, G., & Harding, A. (2007). X-ray Diffraction Imaging for Explosives Detection. October 2006, 199–235.
- Hockney, R. W., Goel, S. P., & Eastwood, J. W. (1974). Quite high-resolution computer models of plasma. Journal of Computational Physics, 14(2), 148–158. https://doi.org/10.1016/0021-9991(74)90010-2
- Hu, X., Zhang, Y., Ding, T., Liu, J., & Zhao, H. (2020). Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. 8(August), 1–17. https://doi.org/10.3389/fbioe.2020.00990
- Joshi, S. Y., & Deshmukh, S. A. (2021). A review of advancements in coarse-grained molecular dynamics simulations. Molecular Simulation, 47(10–11), 786–803. https://doi.org/10.1080/08927022.2020.1828583
- Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications, and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
- Khan, I., Yamani, Z. H., & Qurashi, A. (2017). Ultrasonics Sonochemistry Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrasonics - Sonochemistry, 34, 484–490. https://doi.org/10.1016/j.ultsonch.2016.06.025
- Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., & Kolinski, A. (2016). Coarse-Grained Protein Models and Their Applications. Chemical Reviews, 116(14), 7898–7936. https://doi.org/10.1021/acs.chemrev.6b00163
- Lee, J. I. E. U. N., Lee, N., Kim, T., Kim, J., & Hyeon, T. (2011). Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. 44(10), 893–902
- Lu, X., Zhu, T., Chen, C., & Liu, Y. (2014). Right or Left: The Role of Nanoparticles in Pulmonary Diseases. 17577–17600. https://doi.org/10.3390/ijms151017577
- Mansha, M., Khan, I., Ullah, N., & Qurashi, A. (2017). Synthesis, characterization, and hydrogen evolution reaction of carbazole-containing conjugated polymers. International Journal of Hydrogen Energy, 1–10. https://doi.org/10.1016/j.ijhydene.2017.02.053
- Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 111(27), 7812–7824. https://doi.org/10.1021/jp071097f
- Marrink, S. J., & Tieleman, D. P. (2013). Perspective on the martini model. Chemical Society Reviews, 42(16), 6801–6822. https://doi.org/10.1039/c3cs60093a
- Marrink, S. J., Vries, A. H. De, & Mark, A. E. (2004). Coarse Grained Model for Semiquantitative Lipid Simulations. 750–760.
- Montoya-Villegas, K., Navarro-Félix, R. ., Rejón-Garcia, L., Silva-Carillo, C., Trujillo-Navarrete, B., Lin-Ho, S. ., & Reynoso-Soto, E. . (2020). Synthesis of Au-TiO2 nanoparticles as sensors of 3-mercaptopropionic acid. Revista Mexicana De Ingenieria Quimica, 19(941–952), 97–104.
- Núñez-Delgado, C., Luna-Flores, A., Conde-Hernández, L. A., Flores-Aquino, E., Romero-López, A., & Tepale, N. (2023). Biosynthesis of gold nanoparticles using the aqueous extract of Hippocratea excelsa root bark. Antioxidant and photocatalytic evaluation. Revista Mexicana De Ingeniería Química, 22(IA2367).
- Owen, D. M. (2014). Methods in membrane lipids: Second edition. Methods in Membrane Lipids: Second Edition, 1232, 1–327. https://doi.org/10.1007/978-1-4939-1752-5
- Pizzirusso, A., De Nicola, A., & Milano, G. (2016). MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Journal of Physical Chemistry B, 120(16), 3821–3832. https://doi.org/10.1021/acs.jpcb.6b00646
- Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open-source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
- Ramacharyuly, P.V.R.K; Muhammad, Raeesh; Kumar, Praveen J.; Prasad, G. K. (2015). Iron Phthalocyanine Modified Mesoporous Titania Nanoparticles for Photocatalytic Activity and CO2 Capture Applications. https://doi.org/10.1039/C5CP03576G
- Ramalingam, V. (2019). Multifunctionality of gold nanoparticles: Plausible and convincing properties. Advances in Colloid and Interface Science, 271, 101989. https://doi.org/10.1016/j.cis.2019.101989
- Rawal, I., & Kaur, A. (2013). Sensors and Actuators A: Physical Synthesis of mesoporous polypyrrole nanowires / nanoparticles for ammonia gas sensing application. Sensors & Actuators: A. Physical, 203, 92–102. https://doi.org/10.1016/j.sna.2013.08.023
- Shaalan, M., Saleh, M., & El-mahdy, M. (2016). Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 701–710. https://doi.org/10.1016/j.nano.2015.11.005
- Si, K. J., Chen, Y., Shi, Q., & Cheng, W. (2018). Nanoparticle Superlattices: The Roles of Soft Ligands. https://doi.org/10.1002/advs.201700179
- Souza, L. M. P., Nascimento, J. B., Romeu, A. L., Estrada-López, E. D., & Pimentel, A. S. (2018). Penetration of antimicrobial peptides in a lung surfactant model. Colloids and Surfaces B: Biointerfaces, 167, 345–353. https://doi.org/10.1016/J.COLSURFB.2018.04.030
- Taylor, P., Gunsteren, W. F. Van, & Berendsen, H. J. C. (2007). A Leap-frog Algorithm for Stochastic Dynamics A LEAP-FROG ALGORITHM FOR STOCHASTIC DYNAMICS. May 2013, 37–41.
- Vaisey, G., Banerjee, P., North, A. J., Haselwandter, C. A., & Mackinnon, R. (2022). Piezo1 as a force-through-membrane sensor in red blood cells. ELife, 11, 1–21. https://doi.org/10.7554/ELIFE.82621
- Velasco-Rodríguez, V., Cornejo-Mazon, M., Flores-Flores, J. O., Gutierrez-Lopez, G. F., & Hernandez-Sanchez, H. (2012). Preparation and properties of alpha-lipoic acid-loaded chitosan nanoparticles. Revista Mexicana De Ingenieria Química, 11(1), 155–161.
- Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P., & Marrink, S. J. (2015). Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. https://doi.org/10.1021/acs.jctc.5b00209
- Wong, K., Chen, C., Wei, K., Roy, V. A. L., & Chathoth, S. M. (2015). Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. Journal of Nanoparticle Research, 17(3). https://doi.org/10.1007/s11051-015-2965-x
- Zimbone, M., Calcagno, L., Messina, G., Baeri, P., & Compagnini, G. (2011). Dynamic light scattering and UV-vis spectroscopy of gold nanoparticles solution. Materials Letters, 65(19–20), 2906–2909. https://doi.org/10.1016/j.matlet.2011.06.054
|