- Aliramaji, S., Zamanian, A. and Sohrabijam, Z. (2015). Characterization and Synthesis of Magnetite Nanoparticles by Innovative Sonochemical Method. Procedia Materials Science, 11, 265-269. https://doi.org/10.1016/j.mspro.2015.11.022
- Baena, J. and Marulanda, J. (2011) Análisis de procesos químicos para la síntesis de magnetita en Aplicaciones Biomédicas. In Proceedings of XVIII Congreso Argentino de Bioingeniería, Argentina.
- Bhattu, M., Acevedo, R. and Shnain, A.(2024). A comprehensive review on the synthesis routes, properties and potential applications of ZnFe2O4 ferrites. E3S Web of Conferences, 588, 02014. https://doi.org/10.1051/e3sconf/202458802014.
- Cobos, M., de la Presa, P., Llorente, I., García-Escorial, A., Hernando A. and Jiménez, J. (2020). Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite. J. of Alloys and Compounds, 849, 156353. https://doi.org/10.1016/j.jallcom.2020.156353
- De Vidales, J., López, A., Vila, E., and López, F. (1999). The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. Journal of Alloys and Compounds, 287(1-2), 276-283. https://doi.org/10.1016/S0925-8388(99)00069-9
- Ding, J., Liu, X., Wang, J. and Shi, Y. (2000). Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Letters, 44(1), 19-22. https://doi.org/10.1016/S0167-577X(99)00290-6
- El-Eskandarany, M., Al-Hazza, A., Al-Hajji, L., Ali, N., Al-Duweesh, A., Banyan, M. and Al-Ajmi, F. (2021). Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials, 11(10), 2484. https://doi.org/10.3390/nano11102484
- Garg, J., Chiu, M., Krishnan, S., Kumar, R., Rifah, M., Ahlawat, P. and Gupta, P. (2024). Emerging trends in zinc ferrite nanoparticles for biomedical and environmental applications. Applied Biochemistry and Biotechnology, 196(2), 1008-1043. https://doi.org/10.1007/s12010-023-04570-2
- García, R., Suarez, G., Pech, W., Ordonez, L., Melendez, P., Sanchez, N., and González, D. (2024). Soft chemistry synthesis of size-controlled ZnO nanostructures as photoanode for dye-sensitized solar cell. Revista Mexicana de Ingeniería Química, 23(2). https://doi.org/10.24275/rmiq/IE24235
- Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J. and Raj, B. (2007). Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials Chemistry and Physics, 103(1), 168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011
- Hejazi, A., Al-Hunaiti, A., Bsoul, I., Mohaidat, Q. and Mahmood, S. (2024). Optimizing the synthesis of ZnFe2O4 through chemical and physical methods: effects of the synthesis route on the phase purity, inversion, and magnetic properties of spinel zinc ferrite, Physica Scripta, 99(6), 065029. DOI 10.1088/1402-4896/ad4746
- James, S., Adams, C., Bolm, C., Braga, D., Collier, P., Friščić, T. and Waddell, D.(2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Society Reviews, 41(1), 413-447. DOI: 10.1039/C1CS15171A
- Leal, J., Almaral, J., Hurtado, A., Cortez, M., Bórquez, A., García, B. and Flores, J. (2024). Structural and chemical analysis of Zn ion exchange in thermally modified zeolite A4. Revista Mexicana de Ingeniera Quimica, 23(3), Mat24264. https://doi.org/10.24275/rmiq/Mat24264
- Mahdikhah, V., Ataie, A., Babaei, A., Sheibani, S., Ow-Yang, C. and Abkenar, S. (2019). Control of structural and magnetic characteristics of cobalt ferrite by post-calcination mechanical milling. J. of Physics and Chemistry of Solids,134, 286-294. https://doi.org/10.1016/j.jpcs.2019.06.018
- Méndez, N., Apátiga, L., Rivera, E., Manzano, A., Gonzalez, C. and Zamora, M. (2019). Crystal growth of hydroxyapatite microplates synthesised by Sol–Gel method. Micro & Nano Letters, 14(14), 1414-1417. https://doi.org/10.1049/mnl.2019.0402
- Moghaddam, K. and Ataie, A. (2006). Role of intermediate milling in the processing of nano-size particles of barium hexaferrite via co-precipitation method. J, of alloys and compounds, 426(1-2), 415-419. https://doi.org/10.1016/j.jallcom.2006.02.038
- Moravvej-Farshi, F., Amishi, M. and Nekouee, K. (2020). Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method. J. of Mater. Science: Mater. in Electronics, 31, 13610-13619. https://doi.org/10.1007/s10854-020-03917-3
- Navidpour, A. and Fakhrzad, M. (2020). Photocatalytic and magnetic properties of ZnFe2O4 nanoparticles synthesised by mechanical alloying. Intern. J. of Environmental Analytical Chemistry, 102(3), 690-706. https://doi.org/10.1080/03067319.2020.1726331
- Pedrosa, F., Rial, J., Golasinski, K., Guzik, M., Quesada, A., Fernández, J. and Bollero, A. (2016). Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Applied Phys. Letters, 109(22). https://doi.org/10.1063/1.4969064
- Park, J., Oh, S., and Ha, B.(2001). Characterization of iron (III) oxide nanoparticles prepared by using ammonium acetate as precipitating agent. Korean Journal of Chemical Engineering, 18, 215-219. https://doi.org/10.1007/BF02698462
- Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 241-317.
- Rao, B., Caltun, O., Cho, W., and Kim, C. (2007). Synthesis and characterization of mixed ferrite nanoparticles. Journal of magnetism and magnetic materials, 310(2), 812-814. https://doi.org/10.1016/j.jmmm.2006.10.771
- Sani, R., Beitollahi, A., Maksimov, Y. and Suzdalev, I. (2007). Synthesis, phase formation study and magnetic properties of CoFe2O4 nanopowder prepared by mechanical milling. J. of materials science,42, 2126-2131. https://doi.org/10.1007/s10853-006-1235-9
- Sarkar, K., Mondal, R., Dey, S., Majumder, S. and Kumar, S. (2019). Presence of mixed magnetic phase in mechanically milled nanosized Co0. 5Zn0. 5Fe2O4: A study on structural, magnetic and hyperfine properties. J. of Magnetism and Magnetic Materials, 487, 165303. https://doi.org/10.1016/j.jmmm.2019.165303
- Shenoy, S., Joy, P. and Anantharaman, M. (2004). Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. of magnetism and magnetic materials, 269(2), 217-226. https://doi.org/10.1016/S0304-8853(03)00596-1
- Shi, Y., Ding, J., Liu, X. and Wang, J. (1999). NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. J. of Magnetism and Magnetic Materials, 205(2-3), 249-254. https://doi.org/10.1016/S0304-8853(99)00504-1
- Sukmarani, G., Kusumaningrum, R., Noviyanto, A., Fauzi, F., Habieb, A., Amal, M. and Rochman, N. (2020). Synthesis of manganese ferrite from manganese ore prepared by mechanical milling and its application as an inorganic heat-resistant pigment. J. of materials research and technology, 9(4), 8497-8506. https://doi.org/10.1016/j.jmrt.2020.05.122
- Teja, A. and Koh, P. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45. DOI:10.1016/j.pcrysgrow.2008.08.003
- Thanh, N., Maclean, N. and Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical reviews, 114(15), 7610-7630. https://doi.org/10.1021/cr400544s
- Tomiczek, A. (2021). Effect of milling time on microstructure of cobalt ferrites synthesized by mechanical alloying. Archives of Mater. Science and Engineering, 111(1). DOI: 10.5604/01.3001.0015.5561
- TIP, T. (2023). Interpreting DSC curves Part 1: Dynamic measurements.
- Tehranian, P., Shokuhfar, A. and Bakhshi, H. (2019). Tuning the Magnetic Properties of ZnFe2O4 Nanoparticles Through Partial Doping and Annealing. Journal of Superconductivity and Novel Magnetism, 32, 1013-1025. https://doi.org/10.1007/s10948-018-4785-6
- Verwey, E. and Heilmann, E. (1947). Physical properties and cation arrangement of oxides with spinel structures Locality: synthetic, J. of Chemical Physics, 15, 174-180. https://doi.org/10.1063/1.1746464
- Wang, Q., Liang, E. and Wang, C. (2024). High performance bismuth titanate-ferrite piezoelectric ceramics for high-temperature applications. Journal of the European Ceramic Society, 44(8), 5080-5087. https://doi.org/10.1016/j.jeurceramsoc.2024.02.017
- Wyckoff, R. (1963). Interscience Publishers, New York, New York Note: wurtzite structure. Crystal Structures, 1, 85-237
- Younes, A., Kherrouba, N. and Bouamer, A. (2021). Magnetic, optical, structural and thermal properties of copper ferrite nanostructured synthesized by mechanical alloying. Micro & Nano Letters, 16(4), 251-256. https://doi.org/10.1049/mna2.12040
- Zhang, C., Zhong, X., Yu, H., Liu, Z. and Zeng, D. C. (2009). Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Physica B: Condensed Matter, 404(16), 2327-2331. https://doi.org/10.1016/j.physb.2008.12.044
- Zhang, F., Su, Z., Wen, F. and Li, F. (2008). Synthesis and characterization of polystyrene-grafted magnetite nanoparticles. Colloid and Polymer Science, 286, 837-841. https://doi.org/10.1007/s00396-008-1854-6
- Zhang, Z., Yao, G., Zhang, X., Ma, J. and Lin, H. (2015). Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceramics Inter. 41(3), 4523-4530. https://doi.org/10.1016/j.ceramint.2014.11.147
|