Vol. 24, No. 2 (2025), Mat25509 https://doi.org/10.24275/rmiq/Mat25509


Synthesis of zinc ferrite (ZnFe2O4) by mechanical grinding and calcination with a magnetite/maghemite precursor obtained by coprecipitation, its influence on crystalline, morphological and thermal properties, for its potential use at high temperatures


 

Authors

E. M. Garcia-Rosales, M. G. Rosales-Sosa, I. A. Facundo-Arzola, M. García-Yregoi, C. V. Reyes-Guzmán, Y.M. Rangel-Hernández, B. I. Rosales-Sosa


Abstract

Magnetite/maghemite produced by chemical coprecipitation at different temperatures was reacted with reagent-grade zinc oxide to produce zinc ferrite (ZnFe2O4) by mechanical grinding. After grinding, calcination was applied at 400 °C for 3 hours. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). After grinding treatment, three-phase combinations were observed of the same ferrite, which had not been reported previously and which were stabilized by the application of a calcination treatment. The crystallite sizes of the zinc ferrite (ZnFe2O4) compound ranged from 10.602 nm to 11.602 nm. Particle agglomerations were found by SEM, while TGA analysis shows possible moisture loss, in addition to stability at high temperatures. DSC analysis shows endothermic and exothermic reactions. The best results were obtained with magnetite/maghemite stabilized at 300 °C.


Keywords

mechanical milling, zinc ferrite, coprecipitation, magnetite/maghemite, calcination.


References

  • Aliramaji, S., Zamanian, A. and Sohrabijam, Z. (2015). Characterization and Synthesis of Magnetite Nanoparticles by Innovative Sonochemical Method. Procedia Materials Science, 11, 265-269. https://doi.org/10.1016/j.mspro.2015.11.022
  • Baena, J. and Marulanda, J. (2011) Análisis de procesos químicos para la síntesis de magnetita en Aplicaciones Biomédicas. In Proceedings of XVIII Congreso Argentino de Bioingeniería, Argentina.

 

  • Bhattu, M., Acevedo, R. and Shnain, A.(2024). A comprehensive review on the synthesis routes, properties and potential applications of ZnFe2O4 ferrites. E3S Web of Conferences, 588, 02014. https://doi.org/10.1051/e3sconf/202458802014.

 

  • Cobos, M., de la Presa, P., Llorente, I., García-Escorial, A., Hernando A. and Jiménez, J. (2020). Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite. J. of Alloys and Compounds, 849, 156353. https://doi.org/10.1016/j.jallcom.2020.156353

 

  • De Vidales, J., López, A., Vila, E., and López, F. (1999). The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. Journal of Alloys and Compounds287(1-2), 276-283. https://doi.org/10.1016/S0925-8388(99)00069-9
  • Ding, J., Liu, X., Wang, J. and Shi, Y. (2000). Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Letters, 44(1), 19-22. https://doi.org/10.1016/S0167-577X(99)00290-6

 

  • El-Eskandarany, M., Al-Hazza, A., Al-Hajji, L., Ali, N., Al-Duweesh, A., Banyan, M. and Al-Ajmi, F. (2021). Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials, 11(10), 2484. https://doi.org/10.3390/nano11102484

 

  • Garg, J., Chiu, M., Krishnan, S., Kumar, R., Rifah, M., Ahlawat, P. and Gupta, P. (2024). Emerging trends in zinc ferrite nanoparticles for biomedical and environmental applications. Applied Biochemistry and Biotechnology, 196(2), 1008-1043. https://doi.org/10.1007/s12010-023-04570-2

 

  • Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J. and Raj, B. (2007). Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials Chemistry and Physics, 103(1), 168–175. https://doi.org/10.1016/j.matchemphys.2007.02.011
  • Hejazi, A., Al-Hunaiti, A., Bsoul, I., Mohaidat, Q. and Mahmood, S. (2024). Optimizing the synthesis of ZnFe2O4 through chemical and physical methods: effects of the synthesis route on the phase purity, inversion, and magnetic properties of spinel zinc ferrite, Physica Scripta99(6), 065029. DOI 10.1088/1402-4896/ad4746
  • James, S., Adams, C., Bolm, C., Braga, D., Collier, P., Friščić, T. and Waddell, D.(2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Society Reviews, 41(1), 413-447. DOI: 10.1039/C1CS15171A

 

  • Leal, J., Almaral, J., Hurtado, A., Cortez, M., Bórquez, A., García, B. and Flores, J. (2024). Structural and chemical analysis of Zn ion exchange in thermally modified zeolite A4. Revista Mexicana de Ingeniera Quimica23(3), Mat24264. https://doi.org/10.24275/rmiq/Mat24264

 

  • Mahdikhah, V., Ataie, A., Babaei, A., Sheibani, S., Ow-Yang, C. and Abkenar, S. (2019). Control of structural and magnetic characteristics of cobalt ferrite by post-calcination mechanical milling. J. of Physics and Chemistry of Solids,134, 286-294. https://doi.org/10.1016/j.jpcs.2019.06.018
  • Méndez, N., Apátiga, L., Rivera, E., Manzano, A., Gonzalez, C. and Zamora, M. (2019). Crystal growth of hydroxyapatite microplates synthesised by Sol–Gel method. Micro & Nano Letters, 14(14), 1414-1417. https://doi.org/10.1049/mnl.2019.0402

 

  • Moghaddam, K. and Ataie, A. (2006). Role of intermediate milling in the processing of nano-size particles of barium hexaferrite via co-precipitation method. J, of alloys and compounds, 426(1-2), 415-419. https://doi.org/10.1016/j.jallcom.2006.02.038
  • Moravvej-Farshi, F., Amishi, M. and Nekouee, K. (2020). Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method. J. of Mater. Science: Mater. in Electronics, 31, 13610-13619. https://doi.org/10.1007/s10854-020-03917-3

 

  • Navidpour, A. and Fakhrzad, M. (2020). Photocatalytic and magnetic properties of ZnFe2O4 nanoparticles synthesised by mechanical alloying. Intern. J. of Environmental Analytical Chemistry, 102(3), 690-706. https://doi.org/10.1080/03067319.2020.1726331
  • Pedrosa, F., Rial, J., Golasinski, K., Guzik, M., Quesada, A., Fernández, J. and Bollero, A. (2016). Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Applied Phys. Letters, 109(22). https://doi.org/10.1063/1.4969064

 

  • Park, J., Oh, S., and Ha, B.(2001). Characterization of iron (III) oxide nanoparticles prepared by using ammonium acetate as precipitating agent. Korean Journal of Chemical Engineering18, 215-219. https://doi.org/10.1007/BF02698462
  • Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 241-317.

 

  • Rao, B., Caltun, O., Cho, W., and Kim, C. (2007). Synthesis and characterization of mixed ferrite nanoparticles. Journal of magnetism and magnetic materials, 310(2), 812-814. https://doi.org/10.1016/j.jmmm.2006.10.771
  • Sani, R., Beitollahi, A., Maksimov, Y. and Suzdalev, I. (2007). Synthesis, phase formation study and magnetic properties of CoFe2O4 nanopowder prepared by mechanical milling. J. of materials science,42, 2126-2131. https://doi.org/10.1007/s10853-006-1235-9

 

  • Sarkar, K., Mondal, R., Dey, S., Majumder, S. and Kumar, S. (2019). Presence of mixed magnetic phase in mechanically milled nanosized Co0. 5Zn0. 5Fe2O4: A study on structural, magnetic and hyperfine properties. J. of Magnetism and Magnetic Materials, 487, 165303. https://doi.org/10.1016/j.jmmm.2019.165303
  • Shenoy, S., Joy, P. and Anantharaman, M. (2004). Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. of magnetism and magnetic materials, 269(2), 217-226. https://doi.org/10.1016/S0304-8853(03)00596-1

 

  • Shi, Y., Ding, J., Liu, X. and Wang, J. (1999). NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. J. of Magnetism and Magnetic Materials, 205(2-3), 249-254. https://doi.org/10.1016/S0304-8853(99)00504-1
  • Sukmarani, G., Kusumaningrum, R., Noviyanto, A., Fauzi, F., Habieb, A., Amal, M. and Rochman, N. (2020). Synthesis of manganese ferrite from manganese ore prepared by mechanical milling and its application as an inorganic heat-resistant pigment. J. of materials research and technology, 9(4), 8497-8506. https://doi.org/10.1016/j.jmrt.2020.05.122

 

  • Teja, A. and Koh, P. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1-2), 22-45. DOI:10.1016/j.pcrysgrow.2008.08.003

 

  • Thanh, N., Maclean, N. and Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical reviews, 114(15), 7610-7630. https://doi.org/10.1021/cr400544s
  • Tomiczek, A. (2021). Effect of milling time on microstructure of cobalt ferrites synthesized by mechanical alloying. Archives of Mater. Science and Engineering, 111(1). DOI: 10.5604/01.3001.0015.5561

 

  • TIP, T. (2023). Interpreting DSC curves Part 1: Dynamic measurements.

 

  • Tehranian, P., Shokuhfar, A. and Bakhshi, H. (2019). Tuning the Magnetic Properties of ZnFe2O4 Nanoparticles Through Partial Doping and Annealing. Journal of  Superconductivity and Novel Magnetism32, 1013-1025. https://doi.org/10.1007/s10948-018-4785-6

 

  • Verwey, E. and Heilmann, E. (1947). Physical properties and cation arrangement of oxides with spinel structures Locality: synthetic, J. of Chemical Physics, 15, 174-180. https://doi.org/10.1063/1.1746464
  • Wang, Q., Liang, E. and Wang, C. (2024). High performance bismuth titanate-ferrite piezoelectric ceramics for high-temperature applications. Journal of the European Ceramic Society, 44(8), 5080-5087. https://doi.org/10.1016/j.jeurceramsoc.2024.02.017

 

  • Wyckoff, R. (1963). Interscience Publishers, New York, New York Note: wurtzite structure. Crystal Structures, 1, 85-237
  • Younes, A., Kherrouba, N. and Bouamer, A. (2021).  Magnetic, optical, structural and thermal properties of copper ferrite nanostructured synthesized by mechanical alloying. Micro & Nano Letters, 16(4), 251-256. https://doi.org/10.1049/mna2.12040

 

  • Zhang, C., Zhong, X., Yu, H., Liu, Z. and Zeng, D. C. (2009).  Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Physica B: Condensed Matter404(16), 2327-2331. https://doi.org/10.1016/j.physb.2008.12.044
  • Zhang, F., Su, Z., Wen, F. and Li, F. (2008). Synthesis and characterization of polystyrene-grafted magnetite nanoparticles. Colloid and Polymer Science, 286, 837-841. https://doi.org/10.1007/s00396-008-1854-6

 

  • Zhang, Z., Yao, G., Zhang, X., Ma, J. and Lin, H. (2015). Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceramics Inter. 41(3), 4523-4530. https://doi.org/10.1016/j.ceramint.2014.11.147