- Ahmed, I., Sullivan, K., & Priye, A. (2022). Multi-resin masked stereolithography (MSLA) 3D printing for rapid and inexpensive prototyping of microfluidic chips with integrated functional components. Biosensors (Basel), 12(8), 652. https://doi.org/10.3390/bios12080652
- Autodesk.com. (n.d.). Presición de autodesk. In Autodesk.com. Retrieved December 28, 2024, from https://www.autodesk.com/mx/solutions/cad-software#:~:text=%C2%BFQu%C3%A9%20es%20el%20software%20de,y%20simular%20el%20rendimiento%20real
- Blinn, J. F. (2005). What Is a Pixel? IEEE Computer Graphics and Applications, 25(5), 82–87. https://doi.org/10.1109/MCG.2005.119
- Borra, N. D., & Neigapula, V. S. N. (2023). Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method. Rapid Prototyping Journal, 29(1), 166–184. https://doi.org/10.1108/RPJ-03-2022-0080
- Bragheri, F., Vázquez, R. M., & Osellame, R. (2019). Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization (pp. 493–526). Elsevier. https://doi.org/10.1016/B978-0-12-817827-0.00057-6
- Collingwood, J., De Silva, K., & Arif, K. (2023). High-speed 3D printing for microfluidics: Opportunities and challenges. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.683
- Dietzel Andreas. (2016). Microsystems for Pharmatechnology Manipulation of Fluids, Particles, Droplets, and Cells.
- Dittrich, P. S., & Manz, A. (2006). Lab-on-a-chip: Microfluidics in drug discovery. In Nature Reviews Drug Discovery (Vol. 5, Issue 3, pp. 210–218). https://doi.org/10.1038/nrd1985
- Gao, H., An, J., Chua, C. K., Bourell, D., Kuo, C. N., & Tan, D. T. H. (2023). 3D printed optics and photonics: Processes, materials and applications. In Materials Today (Vol. 69, pp. 107–132). Elsevier B.V. https://doi.org/10.1016/j.mattod.2023.06.019
- Garza-García, L. D., & Lapizco-Encinas, B. H. (2010). STATE OF THE ART ON PROTEIN MANIPULATION EMPLOYING DIELECTROPHORESIS. Revista Mexicana de Ingeniería Química, 2(2), 1156–1741. https://rmiq.org/iqfvp/Pdfs/Vol9%20no%202/RMIQVol9No2_1.pdf
- Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. Springer US. https://doi.org/10.1007/978-1-4419-1120-9
- Junk, S., & Kuen, C. (2016). Review of Open Source and Freeware CAD Systems for Use with 3D-Printing. Procedia CIRP, 50, 430–435. https://doi.org/10.1016/j.procir.2016.04.174
- Kajtez, J., Buchmann, S., Vasudevan, S., Birtele, M., Rocchetti, S., Pless, C. J., Heiskanen, A., Barker, R. A., Martínez-Serrano, A., Parmar, M., Lind, J. U., & Emnéus, J. (2020). 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Advanced Science, 7(16). https://doi.org/10.1002/advs.202001150
- Kaufmann, B. K., Rudolph, M., Pechtl, M., Wildenburg, G., Hayden, O., Clausen-Schaumann, H., & Sudhop, S. (2024). mSLAb – An open-source masked stereolithography (mSLA) bioprinter. HardwareX, 19. https://doi.org/10.1016/j.ohx.2024.e00543
- Lapizco-Encinas, B. H. (2008). APLICACIONES DE MICROFLUÍDICA EN BIOSEPARACIONES MICROFLUIDICS APPLICATIONS IN BIOSEPARATIONS. Revista Mexicana de Ingeniería Química, 7(3), 205–214. https://rmiq.org/iqfvp/Pdfs/Vol%207%20no%203/3_RMIQ_Vol7No3_290508.pdf
- Leong, K. M., Sun, A. Y., Quach, M. L., Lin, C. H., Craig, C. A., Guo, F., Robinson, T. R., Chang, M. M., & Olanrewaju, A. O. (2024). Democratizing Access to Microfluidics: Rapid Prototyping of Open Microchannels with Low-Cost LCD 3D Printers. ACS Omega. https://doi.org/10.1021/acsomega.4c07776
- Liu, X., Sun, A., Brodský, J., Gablech, I., Lednický, T., Vopařilová, P., Zítka, O., Zeng, W., & Neužil, P. (2024). Microfluidics chips fabrication techniques comparison. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-80332-2
- Manapat, J. Z., Chen, Q., Ye, P., & Advincula, R. C. (2017). 3D Printing of Polymer Nanocomposites via Stereolithography. In Macromolecular Materials and Engineering (Vol. 302, Issue 9). Wiley-VCH Verlag. https://doi.org/10.1002/mame.201600553
- Milovanović, A., Montanari, M., Golubović, Z., Mărghitaş, M. P., Spagnoli, A., Brighenti, R., & Sedmak, A. (2024). Compressive and flexural mechanical responses of components obtained through mSLA vat photopolymerization technology. Theoretical and Applied Fracture Mechanics, 131. https://doi.org/10.1016/j.tafmec.2024.104406
- Mishra, P. (2020). Additive Manufacturing (3D Printing): A Review on the Micro fabrication Methods. International Journal for Research in Applied Science and Engineering Technology, 8(4), 956–975. https://doi.org/10.22214/ijraset.2020.4160
- Mukherjee, P., Nebuloni, F., Gao, H., Zhou, J., & Papautsky, I. (2019). Rapid prototyping of soft lithography masters for microfluidic devices using dry film photoresist in a non-cleanroom setting. Micromachines, 10(3). https://doi.org/10.3390/mi10030192
- Niculescu, A.-G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and Applications of Microfluidic Devices: A Review. International Journal of Molecular Sciences, 22(4), 1–26. https://doi.org/10.3390/ijms22042011
- Niedz, R. P., & Evens, T. J. (2016). Design of experiments (DOE)—history, concepts, and relevance to in vitro culture. In In Vitro Cellular and Developmental Biology - Plant (Vol. 52, Issue 6, pp. 547–562). Springer New York LLC. https://doi.org/10.1007/s11627-016-9786-1
- Orzeł, B., & Stecuła, K. (2022). Comparison of 3D Printout Quality from FDM and MSLA Technology in Unit Production. Symmetry, 14(5). https://doi.org/10.3390/sym14050910
- Razavi Bazaz, S., Rouhi, O., Raoufi, M. A., Ejeian, F., Asadnia, M., Jin, D., & Ebrahimi Warkiani, M. (2020). 3D Printing of Inertial Microfluidic Devices. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62569-9
- Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46(11), 2396–2406.
- Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
- Sósol-Fernández, R. E., Marín-Lizárraga, V. M., Rosales-Cruzaley, E., & Lapizco-Encinas, B. H. (2012). ANÁLISIS DE CÉLULAS EN DISPOSITIVOS MICROFLUÍDICOS. Revista Mexicana de Ingeniería Química. https://rmiq.org/iqfvp/Pdfs/Vol.%2011,%20No.%202/Bio2/Bio2.pdf
- Tabeling, P. (2023). Introduction to Microfluidics. Oxford University Press.
- Talam, S., Avula, K. P., Syed, S., & Battula, S. (2025). Fabrication techniques for microfluidics devices. In Utilizing Microfluidics in the Food Industry (pp. 69–96). Elsevier. https://doi.org/10.1016/B978-0-443-13453-1.00004-8
- Taylor, A. M., Rhee, S. W., Tu, C. H., Cribbs, D. H., Cotman, C. W., & Jeon, N. L. (2003). Microfluidic multicompartment device for neuroscience research. Langmuir, 19(5), 1551–1556. https://doi.org/10.1021/la026417v
- Topcu, O., & Unver, H. O. (2011). A method for slicing CAD models in binary STL format. https://www.researchgate.net/publication/259843304
- Torres-Alvarez, D., Bosques-Palomo, B., Martínez-Dibildox, A., Marcos-Abdala, A., Jiménez-Nuñéz, R., Morones-Ramírez, J. R., Aeinehvand, M. M., & Aguirre-Soto, A. (2024). Introduction of the lowest printable (channel) characteristic length (LPCL) as a geometrical metric for the SLA 3D printing of embedded negative micro-structures. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-024-00788-6
- Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J. P., & Ermoshkin, A. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352.
- Valizadeh, I., Tayyarian, T., & Weeger, O. (2023). Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization. Additive Manufacturing, 72. https://doi.org/10.1016/j.addma.2023.103641
- Waldbaur, A., Rapp, H., Länge, K., & Rapp, B. E. (2011). Let there be chip - Towards rapid prototyping of microfluidic devices: One-step manufacturing processes. In Analytical Methods (Vol. 3, Issue 12, pp. 2681–2716). https://doi.org/10.1039/c1ay05253e
- Wei, C., & Li, L. (2021). Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual and Physical Prototyping, 16(3), 347–371.
- Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373. https://doi.org/10.1038/nature05058
- Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2020). Digital light processing based three-dimensional printing for medical applications. International Journal of Bioprinting, 6(1), 12–27. https://doi.org/10.18063/ijb.v6i1.242
- Zhou, X., Hou, Y., & Lin, J. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3). https://doi.org/10.1063/1.4916886
|