Vol. 24, No. 2 (2025), Mat25518 https://doi.org/10.24275/rmiq/Mat25518


3D printing of microchannels with MSLA technology for microfluidic devices: From design to manufacturing


 

Authors

E.G. Rivera-Medellin, I. Pereyra-Laguna, L.E. Lugo-Uribe, M.A. González-López, J. Mayen-Chaires


Abstract

Microfluidics has gained prominence in recent decades due to its ability to manipulate fluids through micrometric channels and perform analyses comparable to those of a full laboratory. Applications span fields such as chemistry and neuroscience. However, one of the main challenges is the fabrication process, which is often expensive and requires specialized facilities. This study aims to design and fabricate microfluidic devices with microchannels that achieve high concordance between the design and the final product, using a low-cost MSLA 3D printer. Variables such as microchannel width and height, along with printing parameters like exposed layer height and exposure time, were evaluated. The fabricated samples were analyzed using a KEYENCE microscope equipped with a VH-20R RZ x20–x200 lens. A design of experiments was conducted to optimize the variable levels, resulting in ideal printing parameters. The findings demonstrate that this technology enables the fabrication of functional microchannels for microfluidic devices, offering an affordable and efficient alternative to traditional methods. This approach has the potential to broaden access to microfluidic technology.


Keywords

microfluidics, microchannels, MSLA 3D printing, area compliance, design of experiments.


References

  • Ahmed, I., Sullivan, K., & Priye, A. (2022). Multi-resin masked stereolithography (MSLA) 3D printing for rapid and      inexpensive prototyping of microfluidic chips with integrated functional      components. Biosensors (Basel), 12(8), 652. https://doi.org/10.3390/bios12080652
  • Autodesk.com. (n.d.). Presición de autodesk. In Autodesk.com. Retrieved December 28, 2024, from https://www.autodesk.com/mx/solutions/cad-software#:~:text=%C2%BFQu%C3%A9%20es%20el%20software%20de,y%20simular%20el%20rendimiento%20real
  • Blinn, J. F. (2005). What Is a Pixel? IEEE Computer Graphics and Applications, 25(5), 82–87. https://doi.org/10.1109/MCG.2005.119
  • Borra, N. D., & Neigapula, V. S. N. (2023). Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method. Rapid Prototyping Journal, 29(1), 166–184. https://doi.org/10.1108/RPJ-03-2022-0080
  • Bragheri, F., Vázquez, R. M., & Osellame, R. (2019). Microfluidics. In Three-Dimensional Microfabrication Using Two-Photon Polymerization (pp. 493–526). Elsevier. https://doi.org/10.1016/B978-0-12-817827-0.00057-6
  • Collingwood, J., De Silva, K., & Arif, K. (2023). High-speed 3D printing for microfluidics: Opportunities and challenges. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.683
  • Dietzel Andreas. (2016). Microsystems for Pharmatechnology Manipulation of Fluids, Particles, Droplets, and Cells.
  • Dittrich, P. S., & Manz, A. (2006). Lab-on-a-chip: Microfluidics in drug discovery. In Nature Reviews Drug Discovery (Vol. 5, Issue 3, pp. 210–218). https://doi.org/10.1038/nrd1985
  • Gao, H., An, J., Chua, C. K., Bourell, D., Kuo, C. N., & Tan, D. T. H. (2023). 3D printed optics and photonics: Processes, materials and applications. In Materials Today (Vol. 69, pp. 107–132). Elsevier B.V. https://doi.org/10.1016/j.mattod.2023.06.019
  • Garza-García, L. D., & Lapizco-Encinas, B. H. (2010). STATE OF THE ART ON PROTEIN MANIPULATION EMPLOYING DIELECTROPHORESIS. Revista Mexicana de Ingeniería Química, 2(2), 1156–1741. https://rmiq.org/iqfvp/Pdfs/Vol9%20no%202/RMIQVol9No2_1.pdf
  • Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies: Rapid prototyping to direct digital      manufacturing. Springer US. https://doi.org/10.1007/978-1-4419-1120-9
  • Junk, S., & Kuen, C. (2016). Review of Open Source and Freeware CAD Systems for Use with 3D-Printing. Procedia CIRP, 50, 430–435. https://doi.org/10.1016/j.procir.2016.04.174
  • Kajtez, J., Buchmann, S., Vasudevan, S., Birtele, M., Rocchetti, S., Pless, C. J., Heiskanen, A., Barker, R. A., Martínez-Serrano, A., Parmar, M., Lind, J. U., & Emnéus, J. (2020). 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Advanced Science, 7(16). https://doi.org/10.1002/advs.202001150
  • Kaufmann, B. K., Rudolph, M., Pechtl, M., Wildenburg, G., Hayden, O., Clausen-Schaumann, H., & Sudhop, S. (2024). mSLAb – An open-source masked stereolithography (mSLA) bioprinter. HardwareX, 19. https://doi.org/10.1016/j.ohx.2024.e00543
  • Lapizco-Encinas, B. H. (2008). APLICACIONES DE MICROFLUÍDICA EN BIOSEPARACIONES MICROFLUIDICS APPLICATIONS IN BIOSEPARATIONS. Revista Mexicana de Ingeniería Química, 7(3), 205–214. https://rmiq.org/iqfvp/Pdfs/Vol%207%20no%203/3_RMIQ_Vol7No3_290508.pdf
  • Leong, K. M., Sun, A. Y., Quach, M. L., Lin, C. H., Craig, C. A., Guo, F., Robinson, T. R., Chang, M. M., & Olanrewaju, A. O. (2024). Democratizing Access to Microfluidics: Rapid Prototyping of Open Microchannels with Low-Cost LCD 3D Printers. ACS Omega. https://doi.org/10.1021/acsomega.4c07776
  • Liu, X., Sun, A., Brodský, J., Gablech, I., Lednický, T., Vopařilová, P., Zítka, O., Zeng, W., & Neužil, P. (2024). Microfluidics chips fabrication techniques comparison. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-80332-2
  • Manapat, J. Z., Chen, Q., Ye, P., & Advincula, R. C. (2017). 3D Printing of Polymer Nanocomposites via Stereolithography. In Macromolecular Materials and Engineering (Vol. 302, Issue 9). Wiley-VCH Verlag. https://doi.org/10.1002/mame.201600553
  • Milovanović, A., Montanari, M., Golubović, Z., Mărghitaş, M. P., Spagnoli, A., Brighenti, R., & Sedmak, A. (2024). Compressive and flexural mechanical responses of components obtained through mSLA vat photopolymerization technology. Theoretical and Applied Fracture Mechanics, 131. https://doi.org/10.1016/j.tafmec.2024.104406
  • Mishra, P. (2020). Additive Manufacturing (3D Printing): A Review on the Micro fabrication Methods. International Journal for Research in Applied Science and Engineering Technology, 8(4), 956–975. https://doi.org/10.22214/ijraset.2020.4160
  • Mukherjee, P., Nebuloni, F., Gao, H., Zhou, J., & Papautsky, I. (2019). Rapid prototyping of soft lithography masters for microfluidic devices using dry film photoresist in a non-cleanroom setting. Micromachines, 10(3). https://doi.org/10.3390/mi10030192
  • Niculescu, A.-G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and Applications of Microfluidic Devices: A Review. International Journal of Molecular Sciences, 22(4), 1–26. https://doi.org/10.3390/ijms22042011
  • Niedz, R. P., & Evens, T. J. (2016). Design of experiments (DOE)—history, concepts, and relevance to in vitro culture. In In Vitro Cellular and Developmental Biology - Plant (Vol. 52, Issue 6, pp. 547–562). Springer New York LLC. https://doi.org/10.1007/s11627-016-9786-1
  • Orzeł, B., & Stecuła, K. (2022). Comparison of 3D Printout Quality from FDM and MSLA Technology in Unit Production. Symmetry, 14(5). https://doi.org/10.3390/sym14050910
  • Razavi Bazaz, S., Rouhi, O., Raoufi, M. A., Ejeian, F., Asadnia, M., Jin, D., & Ebrahimi Warkiani, M. (2020). 3D Printing of Inertial Microfluidic Devices. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62569-9
  • Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46(11), 2396–2406.
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
  • Sósol-Fernández, R. E., Marín-Lizárraga, V. M., Rosales-Cruzaley, E., & Lapizco-Encinas, B. H. (2012). ANÁLISIS DE CÉLULAS EN DISPOSITIVOS MICROFLUÍDICOS. Revista Mexicana de Ingeniería Química. https://rmiq.org/iqfvp/Pdfs/Vol.%2011,%20No.%202/Bio2/Bio2.pdf
  • Tabeling, P. (2023). Introduction to Microfluidics. Oxford University Press.
  • Talam, S., Avula, K. P., Syed, S., & Battula, S. (2025). Fabrication techniques for microfluidics devices. In Utilizing Microfluidics in the Food Industry (pp. 69–96). Elsevier. https://doi.org/10.1016/B978-0-443-13453-1.00004-8
  • Taylor, A. M., Rhee, S. W., Tu, C. H., Cribbs, D. H., Cotman, C. W., & Jeon, N. L. (2003). Microfluidic multicompartment device for neuroscience research. Langmuir, 19(5), 1551–1556. https://doi.org/10.1021/la026417v
  • Topcu, O., & Unver, H. O. (2011). A method for slicing CAD models in binary STL format. https://www.researchgate.net/publication/259843304
  • Torres-Alvarez, D., Bosques-Palomo, B., Martínez-Dibildox, A., Marcos-Abdala, A., Jiménez-Nuñéz, R., Morones-Ramírez, J. R., Aeinehvand, M. M., & Aguirre-Soto, A. (2024). Introduction of the lowest printable (channel) characteristic length (LPCL) as a geometrical metric for the SLA 3D printing of embedded negative micro-structures. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-024-00788-6
  • Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J. P., & Ermoshkin, A. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349–1352.
  • Valizadeh, I., Tayyarian, T., & Weeger, O. (2023). Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization. Additive Manufacturing, 72. https://doi.org/10.1016/j.addma.2023.103641
  • Waldbaur, A., Rapp, H., Länge, K., & Rapp, B. E. (2011). Let there be chip - Towards rapid prototyping of microfluidic devices: One-step manufacturing processes. In Analytical Methods (Vol. 3, Issue 12, pp. 2681–2716). https://doi.org/10.1039/c1ay05253e
  • Wei, C., & Li, L. (2021). Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual and Physical Prototyping, 16(3), 347–371.
  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373. https://doi.org/10.1038/nature05058
  • Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2020). Digital light processing based three-dimensional printing for medical applications. International Journal of Bioprinting, 6(1), 12–27. https://doi.org/10.18063/ijb.v6i1.242
  • Zhou, X., Hou, Y., & Lin, J. (2015). A review on the processing accuracy of two-photon polymerization. AIP Advances, 5(3). https://doi.org/10.1063/1.4916886