Vol. 24, No. 2 (2025), Proc25524 https://doi.org/10.24275/rmiq/Proc25524


Evaluation of the presence of metallic cations (Cu²⁺, Zn²⁺, Fe²⁺, Pb²⁺) in silver sulfide leaching with thiosulfate: Thermodynamic and experimental study


 

Authors

G. Cisneros-Flores, J.C. Juárez-Tapia, I.A. Reyes-Domínguez, N. Toro, G. Urbano-Reyes, E.J. Muñoz-Hernández, J.I. Martínez-Soto, A. M. Teja-Ruíz


Abstract

This study evaluates the effect of Cu²⁺, Zn²⁺, Pb²⁺, and Fe²⁺ on the selective leaching of Ag₂S with thiosulfate. Pourbaix diagrams were used to identify the stability and predominance regions of the species formed as a function of ORP and pH, providing a theoretical framework to predict the influence of each ion. Experimental tests were conducted with high-purity reagents (≥ 99.5%) to isolate the individual effect of each ion without interference from complex matrices. The results showed that Cu²⁺ at low concentrations and Zn²⁺ enhance Ag₂S leaching, while Fe²⁺, Pb²⁺, and higher concentrations of Cu²⁺ inhibit the process, exhibiting behavior similar to cyanicide metals. X-ray Diffraction (XRD) analysis allowed the identification of byproducts formed in the solid residues. The correlation between thermodynamic, experimental, and XRD results led to the proposal of reaction mechanisms in the S₂O₃ – Ag₂S – M²⁺ systems, where M represents the analyzed cations. These findings provide fundamental insights into Ag₂S leaching with thiosulfate and its potential application in polymetallic sulfides and precious metal-containing waste.


Keywords

Silver leaching with thiosulfate, Leaching chemistry, Thiosulfate decomposition.


References

  • Alarcon, A., Segura, C., Gamarra, C., & Rodriguez-Reyes, J. C. F. (2018). Green chemistry in mineral processing: chemical and physical methods to enhance the leaching of silver and the efficiency in cyanide consumption. Pure and Applied Chemistry, 90(7), 1109-1120. https://doi.org/10.1515/pac-2017-0904   
  • Alonso, A. R., & Lapidus, G. T. (2009). Inhibition of lead solubilization during the leaching of gold and silver in ammoniacal thiosulfate solutions (effect of phosphate addition). Hydrometallurgy, 99(1-2), 89-96. https://doi.org/10.1016/j.hydromet.2009.07.010   
  • Alvarado, G., Fuentes-Aceituno, J. C., & Nava-Alonso, F. (2015). Silver leaching with the thiosulfate–nitrite–sulfite–copper alternative system. Hydrometallurgy, 152, 120-128. https://doi.org/10.1016/j.hydromet.2014.12.017  
  • Asencios, Y. J., Martínez, J. C., & Rodríguez, A. (2022). Biosorción de metales pesados utilizando algas marinas modificadas químicamente. Revista Mexicana de Ingeniería Química, 21(1), 157–170. https://rmiq.org/iqfvp/Numbers/V21/No1/IA2600.pdf
  • Barrios, J. M. H., Flores, G. C., Tapia, J. C. J., Ruíz, A. M. T., Ortiz, O. J. H., & García, F. L. (2024). Efecto sinérgico de tiosulfato de sodio y glicina en la lixiviación de plata, utilizando peróxido de hidrógeno como oxidante y etilenglicol, en una muestra polimetálica de Zimapán: influencia de la temperatura. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 11(11), 46-52. https://doi.org/10.29057/aactm.v11i11.13140  
  • Borda, J., Torres, R., & Lapidus, G. Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective Lixiviación selectiva de zinc y plomo del polvo de un horno de arco eléctrico utilizando soluciones de citrato y H2SO4. Una perspectiva cinética. https://doi.org/10.24275/rmiq/Cat2606
  • Bruez, C., Rousseau, A., Lefèvre, G., & Monteux, C. (2024). Investigation of the use of foams for silver leaching using the thiosulfate‑copper (II)-ammonia system in the context of e-waste recycling. Hydrometallurgy, 225. https://doi.org/10.1016/j.hydromet.2024.106279
  • Calla, D., Pantaleón, D. M., & Lapidus, G. T. (2024). The fate of the sulfide ion in galena leaching with neutral citrate media. Revista Mexicana de Ingeniería Química, 23(3), Artículo IA24304. https://doi.org/10.24275/rmiq/IA24304
  • Chen, J. H., Li, Y. Q., Lan, L. H., & Guo, J. (2014). Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen. Journal of Industrial and Engineering Chemistry, 20(1), 268-273. https://doi.org/10.1016/j.jiec.2013.03.039   
  • Cos, C. E., & Fuentes, J. C. (2023). Comprehensive Analysis of the Dissolution of Precious Metals with Innovative Amine-Based Leaching Systems. Epistemus (Sonora), 17(34), 32-40. https://doi.org/10.36790/epistemus.v17i34.267   
  • Deutsch, J. L. (2012). Fundamental aspects of thiosulfate leaching of silver sulfide in the presence of additives (Doctoral dissertation, University of British Columbia). https://dx.doi.org/10.14288/1.0072556  
  • Dwivedi, N., & Dwivedi, S. (2021). Sustainable biological approach for removal of cyanide from wastewater of a metal-finishing industry. In Membrane-Based Hybrid Processes for Wastewater Treatment (pp. 463-479). Elsevier. https://doi.org/10.1016/B978-0-12-823804-2.00010-0  
  • Erust, C., Karacahan, M. K., & Uysal, T. (2023). Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements. Mineral Processing and Extractive Metallurgy Review, 44(6), 436-450. https://doi.org/10.1080/08827508.2022.2073591   
  • Godigamuwa, K., & Okibe, N. (2023). Gold leaching from printed circuit boards using a Novel Synergistic Effect of Glycine and Thiosulfate. Minerals, 13(10). https://doi.org/10.3390/min13101270  
  • H.Y., Li., Elsayed, Oraby., Jacques, Eksteen. (2022). Development of an integrated glycine-based process for base and precious metals recovery from waste printed circuit boards. Resources Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2022.106631  
  • Hao, J., Wang, X., Wang, Y., Guo, F., & Wu, Y. (2023). Study of gold leaching from pre-treated waste printed circuit boards by thiosulfate‑cobalt-glycine system and separation by solvent extraction. Hydrometallurgy, 221. https://doi.org/10.1016/j.hydromet.2023.106141  
  • Hou, L., Valdivieso, A. L., Robledo-Cabrera, A., Zainiddinovich, N. Z., Wu, C., Song, S., & Jia, F. (2024). Stepwise oxidation of refractory pyrite using persulfate for efficient leaching of gold and silver by an eco-friendly copper (II)-glycine-thiosulfate system. Powder Technology, 448. https://doi.org/10.1016/j.powtec.2024.120323  
  • Ismail, W. M. I. W., Zulkefeli, N. S. W., & Masri, M. N. (2016). A sight of zinc corrosion in various alkaline media. Journal of Tropical Resources and Sustainable Science (JTRSS), 4(2), 95-97. https://doi.org/10.47253/jtrss.v4i2.614    
  • Juárez, Julio C, Rivera, Isauro, Patiño, Francisco, & Reyes, María I. (2012). Efecto de la Temperatura y Concentración de Tiosulfatos sobre la Velocidad de Disolución de Plata contenida en Desechos Mineros usando Soluciones S2O32--O2-Zn2+. Información tecnológica, 23(4), 133-138. https://dx.doi.org/10.4067/S0718-07642012000400015  
  • Larrabure, G., & Rodríguez-Reyes, J. C. F. (2021). A review on the negative impact of different elements during cyanidation of gold and silver from refractory ores and strategies to optimize the leaching process. Minerals Engineering, 173. https://doi.org/10.1016/j.mineng.2021.107194  
  • Li, K., Li, Q., Zhang, Y., Liu, X., Yang, Y., & Jiang, T. (2023). Improved thiourea leaching of gold from a gold ore using additives. Hydrometallurgy, 222. https://doi.org/10.1016/j.hydromet.2023.106204   
  • Liu, W., Li, W., Liu, W., Shen, Y., Zhou, S., & Cui, B. (2023). A new strategy for extraction of copper cyanide complex ions from cyanide leach solutions by ionic liquids. Journal of Molecular Liquids, 383. https://doi.org/10.1016/j.molliq.2023.122108  
  • Ma, A., Li, J., Chang, J., & Zheng, X. (2024). Mechanism Analysis and Experimental Research on Leaching Zn from Zinc Oxide Dust with an Ultrasound-Enhanced NH3-NH4Cl-H2O System. Sustainability, 16(7). https://doi.org/10.3390/su16072901
  • Melashvili, M., Fleming, C., Dymov, I., Matthews, D., & Dreisinger, D. (2015). Equation for thiosulphate yield during pyrite oxidation. Minerals Engineering, 74, 105-111. https://doi.org/10.1016/j.mineng.2015.02.004
  • Meléndez-Sánchez, A. C., Hernández-Carmona, G., & López-Maldonado, E. A. (2022). Aislamiento y caracterización de microorganismos resistentes a metales pesados en jales mineros. Revista Mexicana de Ingeniería Química, 21(1), 191–204. https://rmiq.org/iqfvp/Numbers/V21/No1/Bio2700.pdf
  • Mitra, S. (2019). Depletion, technology, and productivity growth in  the metallic minerals industry. Mineral economics, 32(1), 19-37. https://doi.org/10.1007/s13563-018-0165-8   
  • Mystrioti, C., Kousta, K., Papassiopi, N., Adam, K., Taxiarchou, M., & Paspaliaris, I. (2024). Evaluation of Thiosulfate for Gold Recovery from Pressure Oxidation Residues. Materials Proceedings, 15(1). https://doi.org/10.3390/materproc2023015087  
  • Nikkhou, F., Xia, F., & Deditius, A. P. (2019). Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium. Hydrometallurgy, 188, 201-215. https://doi.org/10.1016/j.hydromet.2019.06.017  
  • Ou, Y., Yang, Y., Li, K., Gao, W., Wang, L., Li, Q., & Jiang, T. (2023). Eco-friendly and low-energy innovative scheme of self-generated thiosulfate by atmospheric oxidation for green gold extraction. Journal of Cleaner Production, 387. https://doi.org/10.1016/j.jclepro.2022.135818  
  • Pearson, R. G. (1997). Ácidos y bases duros y blandos. Primera parte: principios fundamentales. Educación Química, 8(4), 208-215. https://doi.org/10.22201/fq.18708404e.1997.4.66600  
  • Puente, D. M., Fuente, J. C., Nava, F., Uribe, A., Pérez, R., & Martínez, V. J. (2021). A phenomenological study of the silver sulfide passivation and oxidative degradation of thiosulfate in the thiosulfate-ammonia‑copper-citrate leaching system. Hydrometallurgy, 200.  https://doi.org/10.1016/j.hydromet.2020.105547  
  • Puente, D. M., Fuentes, J. C., & Nava, F. (2013). A kinetic–thermodynamic study of silver leaching in thiosulfate–copper–ammonia–EDTA solutions. Hydrometallurgy, 134, 124-131. https://doi.org/10.1016/j.hydromet.2013.02.010   
  • Puente, D. M., Fuentes, J. C., & Nava, F. (2017). An analysis of the efficiency and sustainability of the thiosulfate-copper-ammonia-monoethanolamine system for the recovery of silver as an alternative to cyanidation. Hydrometallurgy, 169, 16-25. https://doi.org/10.1016/j.hydromet.2016.12.003   
  • Rezaee, M., Shafaei, S. Z., Abdollahi, H., Mohammadnejad, S., & Mabudi, A. (2023). An Experimental and DFT Study on Using the Thiosulfate–Glycine Complex as an Alternative Agent of Cyanide in the Gold Leaching Process. Journal of Sustainable Metallurgy, 9(3), 1239-1252. https://doi.org/10.1007/s40831-023-00726-w   
  • Ruiz, Á., & Lapidus, G. T. (2017). Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media. Hydrometallurgy, 169, 192-200. https://doi.org/10.1016/j.hydromet.2017.01.014  
  • Ruiz, Á., & Lapidus, G. T. (2018). Improved process for leaching refractory copper sulfides with hydrogen peroxide in aqueous ethylene glycol solutions. In Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy (pp. 1289-1298). Springer International Publishing. https://doi.org/10.1007/978-3-319-95022-8_105  
  • Ruiz, A., & Lapidus, G. T. (2022). A study to understand the role of ethylene glycol in the oxidative acid dissolution of chalcopyrite. Minerals Engineering, 180. https://doi.org/10.1016/j.mineng.2022.107502  
  • Ruiz, A., Lázaro, I., & Lapidus, G. T. (2020). Improvement effect of organic ligands on chalcopyrite leaching in the aqueous medium of sulfuric acid‑hydrogen peroxide-ethylene glycol. Hydrometallurgy, 193. https://doi.org/10.1016/j.hydromet.2020.105293   
  • Segura, B. & Lapidus, G. (2023). Importance of chemical pretreatment for base metals remotion and its effect on the selective extraction of gold from Printed Circuits Boards (PCBs). Revista Mexicana de Ingeniería Química, 22(2), 563–578. https://doi.org/10.24275/rmiq/IA2335
  • Senanayake, G. (2005). Gold leaching by thiosulphate solutions: a critical review on copper (II)–thiosulphate–oxygen interactions. Minerals Engineering, 18(10), 995-1009. https://doi.org/10.1016/j.mineng.2005.01.006  
  • Senanayake, G., Childs, J., Akerstrom, B. D., & Pugaev, D. (2011). Reductive acid leaching of laterite and metal oxides—A review with new data for Fe (Ni, Co) OOH and a limonitic ore. Hydrometallurgy, 110(1-4), 13-32. https://doi.org/10.1016/j.hydromet.2011.07.011  
  • Serap, Ubiç., Rasoul, Khayyam, Nekouei., V., Sahajwalla. (2024). A Two-Step Leaching Process Using Thiourea for the Recovery of Precious Metals from Waste Printed Circuit Boards. https://doi.org/10.3390/waste2030018    
  • Serga, V., Zarkov, A., Blumbergs, E., Shishkin, A., Baronins, J., Elsts, E., & Pankratov, V. (2022). Leaching of gold and copper from printed circuit boards under the alternating current action in hydrochloric acid electrolytes. Metals, 12(11). https://doi.org/10.3390/met12111953   
  • Soto-Uribe, J. C., Valenzuela-Garcia, J. L., Salazar-Campoy, M. M., Parga-Torres, J. R., Vazquez-Vazquez, V. M., Encinas-Romero, M. A., & Martinez-Ballesteros, G. (2023). Electrocoagulation process for recovery of precious metals from cyanide leachates using a low voltage. ACS Engineering Au, 4(1), 139-144. https://doi.org/10.1021/acsengineeringau.3c00041   
  • Tabakova, T., & Andreeva, D. (1996). Mechanism of the oxidative hydrolysis of Iron (II) sulphate. Bulgarian chemical communications, 29(2), 172-187. https://doi.org/10.1007/BF00703026   
  • Torres, R., & Lapidus, G. T. (2020). Base metal citrate pretreatment of complex ores to improve gold and silver leaching with thiourea. Hydrometallurgy, 197. https://doi.org/10.1016/j.hydromet.2020.105461  
  • Torres, R., Segura, B., & Lapidus, G. T. (2018). Effect of temperature on copper, iron and lead leaching from e-waste using citrate solutions. Waste management, 71, 420-425. https://doi.org/10.1016/j.wasman.2017.10.029   
  • Trachevskii, V. V., Zimina, S. V., & Rodina, E. P. (2008). Thiosulfate metal complexes. Russian Journal of Coordination Chemistry, 34, 664-669. https://doi.org/10.1134/S1070328408090066  
  • Urzúa, D. A., Fuentes, J. C., Uribe, A., & Lee, J. C. (2018). An electrochemical study of silver recovery in thiosulfate solutions. A window towards the development of a simultaneous electroleaching-electrodeposition process. Hydrometallurgy, 176, 104-117. https://doi.org/10.1016/j.hydromet.2018.01.017  
  • Xiang, P. Z., Deng, C., Yao, H., Liu, L. J., & Mogdal, S. (2020, August). Leaching Kinetics of Gold Involved in the System S2O32--EDTA-Cu2+. In Materials Science Forum (Vol. 1001, pp. 212-218). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.1001.212   
  • Xin, C., Xia, H., Jiang, G., Zhang, Q., Zhang, L., & Xu, Y. (2022). Studies on Recovery of Valuable Metals by Leaching Lead–Zinc Smelting Waste with Sulfuric Acid. Minerals, 12(10). https://doi.org/10.3390/min12101200  
  • Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T., & Liu, X. (2017). A review of thiosulfate leaching of gold: Focus on thiosulfate consumption and gold recovery from pregnant solution. Metals, 7(6).  https://doi.org/10.3390/met7060222   
  • Yae, S., Iwai, Y., Takashima, Y., Osaka, T., & Matsumoto, A. (2023, December). Gold Recovery from Thiosulfate Leaching Solution Using Silicon Powder and Electrochemical Monitoring of Its Process. In Electrochemical Society Meeting Abstracts 244 (No. 25, pp. 1363-1363). The Electrochemical Society, Inc. https://doi.org/10.1149/MA2023-02251363mtgabs  
  • Zhang, Y., Li, Q., Liu, X., & Jiang, T. (2022). A thermodynamic analysis on thiosulfate leaching of gold under the catalysis of Fe3+/Fe2+ complexes. Minerals Engineering, 180. https://doi.org/10.1016/j.mineng.2022.107511  
  • Zhang, Z. Y., Wu, L., He, K., & Zhang, F. S. (2022). A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards. Waste Management, 153, 13-19. https://doi.org/10.1016/j.wasman.2022.08.011  
Zuo, Q., Wu, D., Wen, S., Cao, J., Wang, Z., & Chen, H. (2023). Advanced oxidation using sulfate radicals for the surface oxidation of Cu2O and the separation of copper via acid leaching. Journal of Molecular Liquids, 390. https://doi.org/10.1016/j.molliq.2023.123195