- Alarcon, A., Segura, C., Gamarra, C., & Rodriguez-Reyes, J. C. F. (2018). Green chemistry in mineral processing: chemical and physical methods to enhance the leaching of silver and the efficiency in cyanide consumption. Pure and Applied Chemistry, 90(7), 1109-1120. https://doi.org/10.1515/pac-2017-0904
- Alonso, A. R., & Lapidus, G. T. (2009). Inhibition of lead solubilization during the leaching of gold and silver in ammoniacal thiosulfate solutions (effect of phosphate addition). Hydrometallurgy, 99(1-2), 89-96. https://doi.org/10.1016/j.hydromet.2009.07.010
- Alvarado, G., Fuentes-Aceituno, J. C., & Nava-Alonso, F. (2015). Silver leaching with the thiosulfate–nitrite–sulfite–copper alternative system. Hydrometallurgy, 152, 120-128. https://doi.org/10.1016/j.hydromet.2014.12.017
- Asencios, Y. J., Martínez, J. C., & Rodríguez, A. (2022). Biosorción de metales pesados utilizando algas marinas modificadas químicamente. Revista Mexicana de Ingeniería Química, 21(1), 157–170. https://rmiq.org/iqfvp/Numbers/V21/No1/IA2600.pdf
- Barrios, J. M. H., Flores, G. C., Tapia, J. C. J., Ruíz, A. M. T., Ortiz, O. J. H., & García, F. L. (2024). Efecto sinérgico de tiosulfato de sodio y glicina en la lixiviación de plata, utilizando peróxido de hidrógeno como oxidante y etilenglicol, en una muestra polimetálica de Zimapán: influencia de la temperatura. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 11(11), 46-52. https://doi.org/10.29057/aactm.v11i11.13140
- Borda, J., Torres, R., & Lapidus, G. Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective Lixiviación selectiva de zinc y plomo del polvo de un horno de arco eléctrico utilizando soluciones de citrato y H2SO4. Una perspectiva cinética. https://doi.org/10.24275/rmiq/Cat2606
- Bruez, C., Rousseau, A., Lefèvre, G., & Monteux, C. (2024). Investigation of the use of foams for silver leaching using the thiosulfate‑copper (II)-ammonia system in the context of e-waste recycling. Hydrometallurgy, 225. https://doi.org/10.1016/j.hydromet.2024.106279
- Calla, D., Pantaleón, D. M., & Lapidus, G. T. (2024). The fate of the sulfide ion in galena leaching with neutral citrate media. Revista Mexicana de Ingeniería Química, 23(3), Artículo IA24304. https://doi.org/10.24275/rmiq/IA24304
- Chen, J. H., Li, Y. Q., Lan, L. H., & Guo, J. (2014). Interactions of xanthate with pyrite and galena surfaces in the presence and absence of oxygen. Journal of Industrial and Engineering Chemistry, 20(1), 268-273. https://doi.org/10.1016/j.jiec.2013.03.039
- Cos, C. E., & Fuentes, J. C. (2023). Comprehensive Analysis of the Dissolution of Precious Metals with Innovative Amine-Based Leaching Systems. Epistemus (Sonora), 17(34), 32-40. https://doi.org/10.36790/epistemus.v17i34.267
- Deutsch, J. L. (2012). Fundamental aspects of thiosulfate leaching of silver sulfide in the presence of additives (Doctoral dissertation, University of British Columbia). https://dx.doi.org/10.14288/1.0072556
- Dwivedi, N., & Dwivedi, S. (2021). Sustainable biological approach for removal of cyanide from wastewater of a metal-finishing industry. In Membrane-Based Hybrid Processes for Wastewater Treatment (pp. 463-479). Elsevier. https://doi.org/10.1016/B978-0-12-823804-2.00010-0
- Erust, C., Karacahan, M. K., & Uysal, T. (2023). Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements. Mineral Processing and Extractive Metallurgy Review, 44(6), 436-450. https://doi.org/10.1080/08827508.2022.2073591
- Godigamuwa, K., & Okibe, N. (2023). Gold leaching from printed circuit boards using a Novel Synergistic Effect of Glycine and Thiosulfate. Minerals, 13(10). https://doi.org/10.3390/min13101270
- H.Y., Li., Elsayed, Oraby., Jacques, Eksteen. (2022). Development of an integrated glycine-based process for base and precious metals recovery from waste printed circuit boards. Resources Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2022.106631
- Hao, J., Wang, X., Wang, Y., Guo, F., & Wu, Y. (2023). Study of gold leaching from pre-treated waste printed circuit boards by thiosulfate‑cobalt-glycine system and separation by solvent extraction. Hydrometallurgy, 221. https://doi.org/10.1016/j.hydromet.2023.106141
- Hou, L., Valdivieso, A. L., Robledo-Cabrera, A., Zainiddinovich, N. Z., Wu, C., Song, S., & Jia, F. (2024). Stepwise oxidation of refractory pyrite using persulfate for efficient leaching of gold and silver by an eco-friendly copper (II)-glycine-thiosulfate system. Powder Technology, 448. https://doi.org/10.1016/j.powtec.2024.120323
- Ismail, W. M. I. W., Zulkefeli, N. S. W., & Masri, M. N. (2016). A sight of zinc corrosion in various alkaline media. Journal of Tropical Resources and Sustainable Science (JTRSS), 4(2), 95-97. https://doi.org/10.47253/jtrss.v4i2.614
- Juárez, Julio C, Rivera, Isauro, Patiño, Francisco, & Reyes, María I. (2012). Efecto de la Temperatura y Concentración de Tiosulfatos sobre la Velocidad de Disolución de Plata contenida en Desechos Mineros usando Soluciones S2O32--O2-Zn2+. Información tecnológica, 23(4), 133-138. https://dx.doi.org/10.4067/S0718-07642012000400015
- Larrabure, G., & Rodríguez-Reyes, J. C. F. (2021). A review on the negative impact of different elements during cyanidation of gold and silver from refractory ores and strategies to optimize the leaching process. Minerals Engineering, 173. https://doi.org/10.1016/j.mineng.2021.107194
- Li, K., Li, Q., Zhang, Y., Liu, X., Yang, Y., & Jiang, T. (2023). Improved thiourea leaching of gold from a gold ore using additives. Hydrometallurgy, 222. https://doi.org/10.1016/j.hydromet.2023.106204
- Liu, W., Li, W., Liu, W., Shen, Y., Zhou, S., & Cui, B. (2023). A new strategy for extraction of copper cyanide complex ions from cyanide leach solutions by ionic liquids. Journal of Molecular Liquids, 383. https://doi.org/10.1016/j.molliq.2023.122108
- Ma, A., Li, J., Chang, J., & Zheng, X. (2024). Mechanism Analysis and Experimental Research on Leaching Zn from Zinc Oxide Dust with an Ultrasound-Enhanced NH3-NH4Cl-H2O System. Sustainability, 16(7). https://doi.org/10.3390/su16072901
- Melashvili, M., Fleming, C., Dymov, I., Matthews, D., & Dreisinger, D. (2015). Equation for thiosulphate yield during pyrite oxidation. Minerals Engineering, 74, 105-111. https://doi.org/10.1016/j.mineng.2015.02.004
- Meléndez-Sánchez, A. C., Hernández-Carmona, G., & López-Maldonado, E. A. (2022). Aislamiento y caracterización de microorganismos resistentes a metales pesados en jales mineros. Revista Mexicana de Ingeniería Química, 21(1), 191–204. https://rmiq.org/iqfvp/Numbers/V21/No1/Bio2700.pdf
- Mitra, S. (2019). Depletion, technology, and productivity growth in the metallic minerals industry. Mineral economics, 32(1), 19-37. https://doi.org/10.1007/s13563-018-0165-8
- Mystrioti, C., Kousta, K., Papassiopi, N., Adam, K., Taxiarchou, M., & Paspaliaris, I. (2024). Evaluation of Thiosulfate for Gold Recovery from Pressure Oxidation Residues. Materials Proceedings, 15(1). https://doi.org/10.3390/materproc2023015087
- Nikkhou, F., Xia, F., & Deditius, A. P. (2019). Variable surface passivation during direct leaching of sphalerite by ferric sulfate, ferric chloride, and ferric nitrate in a citrate medium. Hydrometallurgy, 188, 201-215. https://doi.org/10.1016/j.hydromet.2019.06.017
- Ou, Y., Yang, Y., Li, K., Gao, W., Wang, L., Li, Q., & Jiang, T. (2023). Eco-friendly and low-energy innovative scheme of self-generated thiosulfate by atmospheric oxidation for green gold extraction. Journal of Cleaner Production, 387. https://doi.org/10.1016/j.jclepro.2022.135818
- Pearson, R. G. (1997). Ácidos y bases duros y blandos. Primera parte: principios fundamentales. Educación Química, 8(4), 208-215. https://doi.org/10.22201/fq.18708404e.1997.4.66600
- Puente, D. M., Fuente, J. C., Nava, F., Uribe, A., Pérez, R., & Martínez, V. J. (2021). A phenomenological study of the silver sulfide passivation and oxidative degradation of thiosulfate in the thiosulfate-ammonia‑copper-citrate leaching system. Hydrometallurgy, 200. https://doi.org/10.1016/j.hydromet.2020.105547
- Puente, D. M., Fuentes, J. C., & Nava, F. (2013). A kinetic–thermodynamic study of silver leaching in thiosulfate–copper–ammonia–EDTA solutions. Hydrometallurgy, 134, 124-131. https://doi.org/10.1016/j.hydromet.2013.02.010
- Puente, D. M., Fuentes, J. C., & Nava, F. (2017). An analysis of the efficiency and sustainability of the thiosulfate-copper-ammonia-monoethanolamine system for the recovery of silver as an alternative to cyanidation. Hydrometallurgy, 169, 16-25. https://doi.org/10.1016/j.hydromet.2016.12.003
- Rezaee, M., Shafaei, S. Z., Abdollahi, H., Mohammadnejad, S., & Mabudi, A. (2023). An Experimental and DFT Study on Using the Thiosulfate–Glycine Complex as an Alternative Agent of Cyanide in the Gold Leaching Process. Journal of Sustainable Metallurgy, 9(3), 1239-1252. https://doi.org/10.1007/s40831-023-00726-w
- Ruiz, Á., & Lapidus, G. T. (2017). Study of chalcopyrite leaching from a copper concentrate with hydrogen peroxide in aqueous ethylene glycol media. Hydrometallurgy, 169, 192-200. https://doi.org/10.1016/j.hydromet.2017.01.014
- Ruiz, Á., & Lapidus, G. T. (2018). Improved process for leaching refractory copper sulfides with hydrogen peroxide in aqueous ethylene glycol solutions. In Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy (pp. 1289-1298). Springer International Publishing. https://doi.org/10.1007/978-3-319-95022-8_105
- Ruiz, A., & Lapidus, G. T. (2022). A study to understand the role of ethylene glycol in the oxidative acid dissolution of chalcopyrite. Minerals Engineering, 180. https://doi.org/10.1016/j.mineng.2022.107502
- Ruiz, A., Lázaro, I., & Lapidus, G. T. (2020). Improvement effect of organic ligands on chalcopyrite leaching in the aqueous medium of sulfuric acid‑hydrogen peroxide-ethylene glycol. Hydrometallurgy, 193. https://doi.org/10.1016/j.hydromet.2020.105293
- Segura, B. & Lapidus, G. (2023). Importance of chemical pretreatment for base metals remotion and its effect on the selective extraction of gold from Printed Circuits Boards (PCBs). Revista Mexicana de Ingeniería Química, 22(2), 563–578. https://doi.org/10.24275/rmiq/IA2335
- Senanayake, G. (2005). Gold leaching by thiosulphate solutions: a critical review on copper (II)–thiosulphate–oxygen interactions. Minerals Engineering, 18(10), 995-1009. https://doi.org/10.1016/j.mineng.2005.01.006
- Senanayake, G., Childs, J., Akerstrom, B. D., & Pugaev, D. (2011). Reductive acid leaching of laterite and metal oxides—A review with new data for Fe (Ni, Co) OOH and a limonitic ore. Hydrometallurgy, 110(1-4), 13-32. https://doi.org/10.1016/j.hydromet.2011.07.011
- Serap, Ubiç., Rasoul, Khayyam, Nekouei., V., Sahajwalla. (2024). A Two-Step Leaching Process Using Thiourea for the Recovery of Precious Metals from Waste Printed Circuit Boards. https://doi.org/10.3390/waste2030018
- Serga, V., Zarkov, A., Blumbergs, E., Shishkin, A., Baronins, J., Elsts, E., & Pankratov, V. (2022). Leaching of gold and copper from printed circuit boards under the alternating current action in hydrochloric acid electrolytes. Metals, 12(11). https://doi.org/10.3390/met12111953
- Soto-Uribe, J. C., Valenzuela-Garcia, J. L., Salazar-Campoy, M. M., Parga-Torres, J. R., Vazquez-Vazquez, V. M., Encinas-Romero, M. A., & Martinez-Ballesteros, G. (2023). Electrocoagulation process for recovery of precious metals from cyanide leachates using a low voltage. ACS Engineering Au, 4(1), 139-144. https://doi.org/10.1021/acsengineeringau.3c00041
- Tabakova, T., & Andreeva, D. (1996). Mechanism of the oxidative hydrolysis of Iron (II) sulphate. Bulgarian chemical communications, 29(2), 172-187. https://doi.org/10.1007/BF00703026
- Torres, R., & Lapidus, G. T. (2020). Base metal citrate pretreatment of complex ores to improve gold and silver leaching with thiourea. Hydrometallurgy, 197. https://doi.org/10.1016/j.hydromet.2020.105461
- Torres, R., Segura, B., & Lapidus, G. T. (2018). Effect of temperature on copper, iron and lead leaching from e-waste using citrate solutions. Waste management, 71, 420-425. https://doi.org/10.1016/j.wasman.2017.10.029
- Trachevskii, V. V., Zimina, S. V., & Rodina, E. P. (2008). Thiosulfate metal complexes. Russian Journal of Coordination Chemistry, 34, 664-669. https://doi.org/10.1134/S1070328408090066
- Urzúa, D. A., Fuentes, J. C., Uribe, A., & Lee, J. C. (2018). An electrochemical study of silver recovery in thiosulfate solutions. A window towards the development of a simultaneous electroleaching-electrodeposition process. Hydrometallurgy, 176, 104-117. https://doi.org/10.1016/j.hydromet.2018.01.017
- Xiang, P. Z., Deng, C., Yao, H., Liu, L. J., & Mogdal, S. (2020, August). Leaching Kinetics of Gold Involved in the System S2O32--EDTA-Cu2+. In Materials Science Forum (Vol. 1001, pp. 212-218). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.1001.212
- Xin, C., Xia, H., Jiang, G., Zhang, Q., Zhang, L., & Xu, Y. (2022). Studies on Recovery of Valuable Metals by Leaching Lead–Zinc Smelting Waste with Sulfuric Acid. Minerals, 12(10). https://doi.org/10.3390/min12101200
- Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T., & Liu, X. (2017). A review of thiosulfate leaching of gold: Focus on thiosulfate consumption and gold recovery from pregnant solution. Metals, 7(6). https://doi.org/10.3390/met7060222
- Yae, S., Iwai, Y., Takashima, Y., Osaka, T., & Matsumoto, A. (2023, December). Gold Recovery from Thiosulfate Leaching Solution Using Silicon Powder and Electrochemical Monitoring of Its Process. In Electrochemical Society Meeting Abstracts 244 (No. 25, pp. 1363-1363). The Electrochemical Society, Inc. https://doi.org/10.1149/MA2023-02251363mtgabs
- Zhang, Y., Li, Q., Liu, X., & Jiang, T. (2022). A thermodynamic analysis on thiosulfate leaching of gold under the catalysis of Fe3+/Fe2+ complexes. Minerals Engineering, 180. https://doi.org/10.1016/j.mineng.2022.107511
- Zhang, Z. Y., Wu, L., He, K., & Zhang, F. S. (2022). A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards. Waste Management, 153, 13-19. https://doi.org/10.1016/j.wasman.2022.08.011
Zuo, Q., Wu, D., Wen, S., Cao, J., Wang, Z., & Chen, H. (2023). Advanced oxidation using sulfate radicals for the surface oxidation of Cu2O and the separation of copper via acid leaching. Journal of Molecular Liquids, 390. https://doi.org/10.1016/j.molliq.2023.123195
|