- Adanez , J., Abad, A., Garcia-Labiano, F., Gayan, P., & De Diego, L. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 38(2), 215-282. doi:https://doi.org/10.1016/j.pecs.2011.09.001
- ANSYS. (2013). Ansys Fluent Theory Guide. Theory Guide. Retrieved from Retrieved from https://www.ansys.com
- Archer, C., & Jacobson, M. (2005). Journal of Geophysical Research: Atmospheres, 110(D12). doi: https://doi.org/10.1029/2004JD005462
- Deng, Z., Xiao, R., Jin, B., & Song, Q. (2009). Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier. International Journal of Greenhouse Gas Control, 3(4), 368-375. doi:https://doi.org/10.1016/j.ijggc.2008.11.004
- Deng, Z., Xiao, R., Jin, B., Song, Q., & Huang, H. (2008). Multiphase CFD modeling for a chemical looping combustion process (fuel reactor). Chemical Engineering & Technology, 31(12), 1754-1766. doi: https://doi.org/10.1002/ceat.200800341
- Efhaima, A., & Al‐Dahhan, M. (2017). Assessment of scale‐up dimensionless groups methodology of gas‐solid fluidized beds using advanced non‐invasive measurement techniques (CT and RPT). The Canadian Journal of Chemical Engineering, 95(4), 656-669. doi: https://doi.org/10.1002/cjce.22745
- Efhaima, A., & Al‐Dahhan, M. (2021). Validation of the new mechanistic scale‐up of gas‐solid fluidized beds using advanced non‐invasive measurement techniques. The Canadian Journal of Chemical Engineering, 99(9), 1984-2002. doi: https://doi.org/10.1002/cjce.23938
- Ergun, S. (1949). Fluid Flow through Randomly Packed Columns and Fluidized Beds. Industrial & Engineering Chemistry, 41(6), 1179-1184. doi:doi: 10.1021/ie50474a011
- Gitay, H. (2002). Biodiversity IPCC Technical Paper. Change Climate.
- Glicksman, L., Hyre, M., & Woloshun, K. (1993). Simplified scaling relationships for fluidized beds. Power Technology, 77, 177-199. doi:https://doi.org/10.1016/0032-5910(93)80055-F
- Guan, Y., Chang, J., Zhang, K., Wang, B., & Sun, Q. (2014). Three dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion. Powder technology 268, 316-328. doi:https://doi.org/10.1016/j.powtec.2014.08.046
- Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy policy. Energy policy, 52, 797-809. doi:https://doi.org/10.1016/j.enpol.2012.10.046
- Jin, B., Xiao, R., Deng, Z., & Song, Q. (2009). Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier. International Journal of Chemical Reactor Engineering, 7(1). doi:https://doi.org/10.2202/1542-6580.1786
- Jung, J., & Gamwo, I. (2008). Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling. Powder Technology, 183(3), 401-409. doi:https://doi.org/10.1016/j.powtec.2008.01.019
- Kerr, H. (2005). Capture and separation technologies gaps and priority research needs. Elsevier Ltd. Oxford, UK, 1, 655-660.
- Kruggel-Emden, H., Rickelt, S., Stepanek, F., & Munjiza, A. (2010). Development and testing of an interconnected multiphase CFD-model for chemical looping combustion. Chemical engineering science, 65(16), 4732-4745. doi:https://doi.org/10.1016/j.ces.2010.05.022
- Kumar, S., & Muhuri, P. (2019). A novel GDP prediction technique based on transfer learning using CO2 emission dataset. Applied Energy, 253, 113476. doi:https://doi.org/10.1016/j.apenergy.2019.113476
- Launder, B., & Spalding, D. (1983). The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion, 96-116. doi:https://doi.org/10.1016/B978-0-08-030937-8.50016-7
- Levesnpiel, O. (1999). COMMENTARIES: Chemical Reaction Engineering. Industrial and Engineering Chemistry Research, 38, 4140-4143.
- Lin, J., Luo, K., Sun, L., Wang, S., Hu, C., & Fan, J. (2019). Numerical investigation of nickel–copper oxygen carriers in chemical-looping combustion process with zero emission of CO and H2. Energy & Fuels, 33(11), 12096-12105.
- Lun, C., Savage, S., Jeffrey , D., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of fluid mechanics, 140, 223-256. doi:https://doi.org/10.1017/S0022112084000586
- Mahalatkar, K., Kuhlman, J., Huckaby, E., & O'Brien, T. (2011). Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels. Chemical engineering science, 66(3), 469-479. doi:https://doi.org/10.1016/j.ces.2010.11.003
- Martínez-Prado, M. A. (2016). Estimación de las emisiones de gases de efecto invernadero para el estado de Durango, México. Revista Mexicana de Ingeniería Química, 15(2), 575-601.
- Masson-Delmotte, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., . . . Pidcock, R. (2018). Global Warming of 1.5 OC: An IPCC Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Chang. Geneva, Switzerland: World Meteorological Organization.
- Nguyen, T., Seo, M., Lim, Y., Song, B., & Kim, S. (2012). CFD simulation with experiments in a dual circulating fluidized bed gasifier. Computers & chemical engineering, 36, 48-56. doi:https://doi.org/10.1016/j.compchemeng.2011.07.005
- Pugazhendhi, A., Mathimani, T., Varjani, S., Rene, E., Kumar, G., Kim, S., & Yoon, J. (2019). Biobutanol as a promising liquid fuel for the future-recent updates and perspectives. Fuel, 253, 637-646. doi:https://doi.org/10.1016/j.fuel.2019.04.139
- Scheaffer, D. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of differential equations, 66(1), 19-50. doi:https://doi.org/10.1016/0022-0396(87)90038-6
- Seo, M., Nguyen, T., Lim, Y., Kim, S., Park, S., Song, B., & Kim, Y. (2011). Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: experiments and CFD simulation. Chemical engineering journal, 168(2), 803-811. doi:https://doi.org/10.1016/j.cej.2011.01.041
- Shafiq, H., Azam, S., & Hussain, A. (2021). Steam gasification of municipal solid waste for hydrogen production using Aspen Plus Simulation. Discover Chemical Engineering, 1(4), 1-16. doi:https://doi.org/10.1007/s43938-021-00004-9
- Shuai, W., Guodong, L., Huilin, L., Juhui, C., Yurong, H., & Jiaxing, W. (2011). Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds. Fuel Processing Technology, 92(3), 385-393. doi:https://doi.org/10.1016/j.fuproc.2010.09.032
- Shuai, W., Huilin, L., Feixiang, Z., & Guodong, L. (2014). CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes. Chemical Engineering Journal, 236, 121-130. doi:https://doi.org/10.1016/j.cej.2013.09.033
- Shuai, W., Yunchao, Y., Huilin, L., Jiaxing, W., Pengfei, X., & Guodong, L. (2011). Hydrodynamic simulation of fuel-reactor in chemical looping combustion process. Chemical Engineering Research and Design, 89(9), 1501-1510. doi:https://doi.org/10.1016/j.cherd.2010.11.002
- Sornumpol, R., Uraisakul, W., Kuchonthara, P., Chalermsinsuwan, B., & Piumsomboon, P. (2017). CFD simulation of fuel reactor in chemical looping combustion. Energy Procedia, 138, 979-984. doi:https://doi.org/10.1016/j.egypro.2017.10.096
- Stocker, T., Qin, D., Plattner, G., Alexander, L., Allen, S., Bindoff, N., & Xie, S. (2013). Technical summary. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535.
- Syamlal, M., Rogers, W., & O'Brien, T. (1993). MFIX documentation theory guide. USA: USDOE Morgantown Energy Technology Center. doi:https://doi.org/10.2172/10145548
- Wen, & Yu, C. (1966). Mechanics of fluidization., 62, pp. p. 100-111.
- Whitaker, S. (2009). Chemical Engineering Education: Making Connections at Interfaces. Revista Mexicana de Ingeniería Química, 8, 1-33. Retrieved from https://scielo.org.mx/scielo.php
- Zaid, F., Al-Rubaye, H., Aljuwaya, T., & Al-Dahhan, M. (2023). Assessment of the Dimensionless Groups-Based Scale-Up of Gas-Solid Fluidized Beds. Processes, 11(1). doi:https://doi.org/10.3390/pr11010168
|