Vol. 24, No. 2 (2025), Sim25480 https://doi.org/10.24275/rmiq/Sim25480


Numerical analysis of ilmenite particle diameter on thermal and fluid dynamic behavior in a chemical looping combustion system


 

Authors

F. A. Ocampo-Vaca, C. A. Hernández-Bocanegra, R. Maya-Yescas, J. A. Ramos-Banderas


Abstract

This study utilized numerical simulation to analyze the effect of particle diameter on the fluid dynamics within a chemical looping combustion (CLC) system consisting of two interconnected fluidized bed reactors. The non-isothermal multiphase Eulerian model was employed to simulate ilmenite particles as the granular phase in the CLC system, aiming to investigate the impact of particle diameters of 80 µm, 120 µm, 150 µm, 180 µm, 220 µm, and 270 µm on their distribution within the reactor system. The results demonstrated that particle diameter is a critical variable, significantly influencing their distribution. For particles measuring 80 µm and 120 µm, the drag force generated by the airflow predominates, resulting in complete entrainment of the granular phase in the air reactor. In the cases of particles with diameters between 150 µm and 180 µm, the drag force is counterbalanced by gravitational force and for particles with diameters of 220 µm and larger gravitational force exceeds drag force for particles with diameters of 220 µm and larger, rendering them unsuitable for use within this system. Finally, regarding temperature the results showed less cooling of the system when 150 µm particles were used.


Keywords

Chemical looping combustion, CO2 emissions, particle flow, numerical simulation.


References

  • Adanez , J., Abad, A., Garcia-Labiano, F., Gayan, P., & De Diego, L. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in energy and combustion science, 38(2), 215-282. doi:https://doi.org/10.1016/j.pecs.2011.09.001
  • ANSYS. (2013). Ansys Fluent Theory Guide. Theory Guide. Retrieved from Retrieved from https://www.ansys.com
  • Archer, C., & Jacobson, M. (2005). Journal of Geophysical Research: Atmospheres, 110(D12). doi: https://doi.org/10.1029/2004JD005462
  • Deng, Z., Xiao, R., Jin, B., & Song, Q. (2009). Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier. International Journal of Greenhouse Gas Control, 3(4), 368-375. doi:https://doi.org/10.1016/j.ijggc.2008.11.004
  • Deng, Z., Xiao, R., Jin, B., Song, Q., & Huang, H. (2008). Multiphase CFD modeling for a chemical looping combustion process (fuel reactor). Chemical Engineering & Technology, 31(12), 1754-1766. doi: https://doi.org/10.1002/ceat.200800341
  • Efhaima, A., & Al‐Dahhan, M. (2017). Assessment of scale‐up dimensionless groups methodology of gas‐solid fluidized beds using advanced non‐invasive measurement techniques (CT and RPT). The Canadian Journal of Chemical Engineering, 95(4), 656-669. doi: https://doi.org/10.1002/cjce.22745
  • Efhaima, A., & Al‐Dahhan, M. (2021). Validation of the new mechanistic scale‐up of gas‐solid fluidized beds using advanced non‐invasive measurement techniques. The Canadian Journal of Chemical Engineering, 99(9), 1984-2002. doi: https://doi.org/10.1002/cjce.23938
  • Ergun, S. (1949). Fluid Flow through Randomly Packed Columns and Fluidized Beds. Industrial & Engineering Chemistry, 41(6), 1179-1184. doi:doi: 10.1021/ie50474a011
  • Gitay, H. (2002). Biodiversity IPCC Technical Paper. Change Climate.
  • Glicksman, L., Hyre, M., & Woloshun, K. (1993). Simplified scaling relationships for fluidized beds. Power Technology, 77, 177-199. doi:https://doi.org/10.1016/0032-5910(93)80055-F
  • Guan, Y., Chang, J., Zhang, K., Wang, B., & Sun, Q. (2014). Three dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion. Powder technology 268, 316-328. doi:https://doi.org/10.1016/j.powtec.2014.08.046
  • Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy policy. Energy policy, 52, 797-809. doi:https://doi.org/10.1016/j.enpol.2012.10.046
  • Jin, B., Xiao, R., Deng, Z., & Song, Q. (2009). Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier. International Journal of Chemical Reactor Engineering, 7(1). doi:https://doi.org/10.2202/1542-6580.1786
  • Jung, J., & Gamwo, I. (2008). Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling. Powder Technology, 183(3), 401-409. doi:https://doi.org/10.1016/j.powtec.2008.01.019
  • Kerr, H. (2005). Capture and separation technologies gaps and priority research needs. Elsevier Ltd. Oxford, UK, 1, 655-660.
  • Kruggel-Emden, H., Rickelt, S., Stepanek, F., & Munjiza, A. (2010). Development and testing of an interconnected multiphase CFD-model for chemical looping combustion. Chemical engineering science, 65(16), 4732-4745. doi:https://doi.org/10.1016/j.ces.2010.05.022
  • Kumar, S., & Muhuri, P. (2019). A novel GDP prediction technique based on transfer learning using CO2 emission dataset. Applied Energy, 253, 113476. doi:https://doi.org/10.1016/j.apenergy.2019.113476
  • Launder, B., & Spalding, D. (1983). The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion, 96-116. doi:https://doi.org/10.1016/B978-0-08-030937-8.50016-7
  • Levesnpiel, O. (1999). COMMENTARIES: Chemical Reaction Engineering. Industrial and Engineering Chemistry Research, 38, 4140-4143.
  • Lin, J., Luo, K., Sun, L., Wang, S., Hu, C., & Fan, J. (2019). Numerical investigation of nickel–copper oxygen carriers in chemical-looping combustion process with zero emission of CO and H2. Energy & Fuels33(11), 12096-12105.
  • Lun, C., Savage, S., Jeffrey , D., & Chepurniy, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of fluid mechanics, 140, 223-256. doi:https://doi.org/10.1017/S0022112084000586
  • Mahalatkar, K., Kuhlman, J., Huckaby, E., & O'Brien, T. (2011). Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels. Chemical engineering science, 66(3), 469-479. doi:https://doi.org/10.1016/j.ces.2010.11.003
  • Martínez-Prado, M. A. (2016). Estimación de las emisiones de gases de efecto invernadero para el estado de Durango, México. Revista Mexicana de Ingeniería Química15(2), 575-601.
  • Masson-Delmotte, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P., . . . Pidcock, R. (2018). Global Warming of 1.5 OC: An IPCC Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Chang. Geneva, Switzerland: World Meteorological Organization.
  • Nguyen, T., Seo, M., Lim, Y., Song, B., & Kim, S. (2012). CFD simulation with experiments in a dual circulating fluidized bed gasifier. Computers & chemical engineering, 36, 48-56. doi:https://doi.org/10.1016/j.compchemeng.2011.07.005
  • Pugazhendhi, A., Mathimani, T., Varjani, S., Rene, E., Kumar, G., Kim, S., & Yoon, J. (2019). Biobutanol as a promising liquid fuel for the future-recent updates and perspectives. Fuel, 253, 637-646. doi:https://doi.org/10.1016/j.fuel.2019.04.139
  • Scheaffer, D. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of differential equations, 66(1), 19-50. doi:https://doi.org/10.1016/0022-0396(87)90038-6
  • Seo, M., Nguyen, T., Lim, Y., Kim, S., Park, S., Song, B., & Kim, Y. (2011). Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: experiments and CFD simulation. Chemical engineering journal, 168(2), 803-811. doi:https://doi.org/10.1016/j.cej.2011.01.041
  • Shafiq, H., Azam, S., & Hussain, A. (2021). Steam gasification of municipal solid waste for hydrogen production using Aspen Plus Simulation. Discover Chemical Engineering, 1(4), 1-16. doi:https://doi.org/10.1007/s43938-021-00004-9
  • Shuai, W., Guodong, L., Huilin, L., Juhui, C., Yurong, H., & Jiaxing, W. (2011). Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds. Fuel Processing Technology, 92(3), 385-393. doi:https://doi.org/10.1016/j.fuproc.2010.09.032
  • Shuai, W., Huilin, L., Feixiang, Z., & Guodong, L. (2014). CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes. Chemical Engineering Journal, 236, 121-130. doi:https://doi.org/10.1016/j.cej.2013.09.033
  • Shuai, W., Yunchao, Y., Huilin, L., Jiaxing, W., Pengfei, X., & Guodong, L. (2011). Hydrodynamic simulation of fuel-reactor in chemical looping combustion process. Chemical Engineering Research and Design, 89(9), 1501-1510. doi:https://doi.org/10.1016/j.cherd.2010.11.002
  • Sornumpol, R., Uraisakul, W., Kuchonthara, P., Chalermsinsuwan, B., & Piumsomboon, P. (2017). CFD simulation of fuel reactor in chemical looping combustion. Energy Procedia, 138, 979-984. doi:https://doi.org/10.1016/j.egypro.2017.10.096
  • Stocker, T., Qin, D., Plattner, G., Alexander, L., Allen, S., Bindoff, N., & Xie, S. (2013). Technical summary. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535.
  • Syamlal, M., Rogers, W., & O'Brien, T. (1993). MFIX documentation theory guide. USA: USDOE Morgantown Energy Technology Center. doi:https://doi.org/10.2172/10145548
  • Wen, & Yu, C. (1966). Mechanics of fluidization., 62, pp. p. 100-111.
  • Whitaker, S. (2009). Chemical Engineering Education: Making Connections at Interfaces. Revista Mexicana de Ingeniería Química, 8, 1-33. Retrieved from https://scielo.org.mx/scielo.php
  • Zaid, F., Al-Rubaye, H., Aljuwaya, T., & Al-Dahhan, M. (2023). Assessment of the Dimensionless Groups-Based Scale-Up of Gas-Solid Fluidized Beds. Processes, 11(1). doi:https://doi.org/10.3390/pr11010168