Vol. 24, No. 3 (2025), Alim25592 https://doi.org/10.24275/rmiq/Alim25592


Development and characterization of antimicrobial bilayer biodegradable films from wheat flour and biopolymers for food packaging


 

Authors

R.E. González-Cuello, J.A. Gómez-Salazar, R. Ortega-Toro


Abstract

This study focuses on the development and characterization of biodegradable bilayer films with antimicrobial properties (against Bacillus cereus) formed from wheat flour (WF) monolayers assembled with polycaprolactone (PCL) or Mater-Bi (MB). Monolayer films were made by compression molding, and bilayer films were obtained by bonding a wheat flour layer with a PCL or Mater-Bilayer, incorporating potassium sorbate (PS) and citric acid (CA) as antimicrobial agents at the interface. Film properties were evaluated, including color, gloss, thickness, opacity, internal transmittance, moisture content, water solubility, water absorption capacity, water contact angle, water vapor permeability, mechanical properties, and antimicrobial activity. The results showed that the bilayers with PCL and Mater-Bi offer a better barrier and lower solubility than the wheat flour monolayers and, in turn, show moderate stresses and deformations, with higher elastic moduli, especially in the BWF-CA-MB bilayer, which has the highest elastic modulus (174.5 MPa). Also, the inclusion of antimicrobial agents and the combination of varied materials significantly influence the properties of the films, highlighting the antimicrobial effectiveness against Bacillus cereus. The study concludes the films offer a sustainable alternative to conventional plastics, improving food safety and extending shelf life in food packaging combining sustainability with functionality. However, additional studies using real food matrices are required to confirm their impact on food safety and product shelf-life extension.


Keywords

Biodegradable packaging, Bilayer films, Wheat flour, Polycaprolactone (PCL), Mater Bi, Antimicrobial activity, Bacillus cereus.


References

  • Acevedo-Puello, V., Figueroa-López, K.J. and Ortega-Toro, R. (2023). Gelatin-based hydrogels containing microcrystalline and nanocrystalline cellulose as moisture absorbers for food packaging applications. Journal of Composites Science 7(8), 337. https://doi.org/10.3390/jcs7080337  
  • Aguirre, A., Borneo, R. and León, A.E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience 1, 2–9. https://doi.org/10.1016/j.fbio.2012.12.001
  • Aldas, M., Pavon, C., Ferri, J. M., Arrieta, M. P., and López-Martínez, J. (2021). Films based on Mater-Bi® compatibilized with pine resin derivatives: optical, barrier, and disintegration properties. Polymers, 13(9), 1506. https://doi.org/10.3390/polym13091506
  • Alzate, P., Gerschenson, L., and Flores, S. (2021). Study of the performance of particles based on modified starches containing potassium sorbate and incorporated into biodegradable films: Physicochemical characterization and antimicrobial action. Chem, 3(2), 658–671. https://doi.org/10.3390/chemistry3020046
  • ASTM International. Standard Test Method for Specular Gloss. 1999;523–89.
  • Avila, L.B., Pinto, D., Silva, L.F.O., de Farias, B.S., Moraes, C.C., Da Rosa, G.S. and Dotto, G. (2022). Antimicrobial bilayer film based on chitosan/electrospun zein fiber loaded with jaboticaba peel extract for food packaging applications. Polymers 14(24), 5457. https://doi.org/10.3390/polym14245457  
  • Balan, G.C., Paulo, A.F.S., Correa, L.G., Alvim. I.D., Ueno, C.T., Coelho, A.R., Stroher, G.R., Yamashita, F., Sakanaka, L.S. and Shirai, M.A. (2021). Production of wheat flour/PBAT active films incorporated with oregano oil microparticles and its application in fresh pastry conservation. Food and Bioprocess Technology 14(8), 1587–99. https://doi.org/10.1007/s11947-021-02659-2  
  • Carmona-Cantillo, D., López-Padilla, A., & Ortega-Toro, R. (2025b). Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals. Journal of Composites Science 2025, Vol. 9, Page 249, 9(5), 249. https://doi.org/10.3390/JCS9050249
  • Cheng, S., Yin, C., Li, K., Liu, Z., Pan, Q., Zuo, X., Guo, A. and Ma, H. (2024). Preparation and characterization of probiotic Bacillus velezensis 906 metabolites /potassium sorbate/ polyvinyl alcohol antimicrobial blend film. Food Bioscience 61, 104633. https://doi.org/10.1016/j.fbio.2024.104633  
  • Collazo-Bigliardi, S., Ortega-Toro, R. and Chiralt, A. (2019). Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packaging and Shelf Life 22, 100383. https://doi.org/10.1016/j.fpsl.2019.100383  
  • Dong, M., Tian, L., Li, J., Jia, J., Dong, Y., Tu, Y., Liu, X., Tan, C. and Duan, X. (2022). Improving physicochemical properties of edible wheat gluten protein films with proteins, polysaccharides and organic acid. LWT 154, 112868. https://doi.org/10.1016/j.lwt.2021.112868  
  • Drakos, A., Pelava, E. and Evageliou, V. (2018). Properties of flour films as affected by the flour’s source and particle size. Food Research International 107, 551–8. https://doi.org/10.1016/j.foodres.2018.03.005  
  • Ezati, P., Khan, A., Priyadarshi, R., Bhattacharya, T., Tammina, S.K. and Rhim, J.W. (2023) Biopolymer-based UV protection functional films for food packaging. Food Hydrocolloids 142, 108771. https://doi.org/10.1016/j.foodhyd.2023.108771  
  • Gómez-Contreras, P., Hernández-Fernández, J. and Ortega-Toro, R. (2023). Obtención y caracterización de colágeno del pez de agua dulce Prochilodus magdalenae: aplicación en películas biodegradables. Información Tecnológica 34(2), 89–98. https://doi.org/10.1016/j.ijbiomac.2021.10.075  
  • Gu, H., Wang, C., Gong, S., Mei, Y., Li, H. and Ma, W. (2016) Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surface and Coatings Technology 292, 72–7. https://doi.org/10.1016/j.surfcoat.2016.03.014  
  • Guo, L., Fang, F., Zhang, Y., Xu, D., Xu, X. and Jin, Z. (2020). Effect of glutathione on gelatinization and retrogradation of wheat flour and starch. Journal of Cereal Science 95, 103061. https://doi.org/10.1016/j.jcs.2020.103061  
  • Gürler, N., Pekdemir, M.E., Torğut, G. and Kök, M. (2023). Binary PCL–waste photopolymer blends for biodegradable food packaging applications. Journal of Molecular Structure 1279, 134990. https://doi.org/10.1016/j.molstruc.2023.134990  
  • Hong, J., An, D., Wang, M., Liu, C., Buckow, R., Li, L., Zheng, X. and Bian, K. (2021). Wheat noodles enriched with A‐type and/or B‐type wheat starch: physical, thermal and textural properties of dough sheet and noodle samples from different noodle‐making process. International Journal of Food Science & Technology 56(6), 3111–22. https://doi.org/10.1111/ijfs.14954   
  • Kowalczyk, D., Kordowska-Wiater, M., Karaś, M., Zięba, E., Mężyńska, M. and Wiącek, A.E. (2020). Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids 101, 105539. https://doi.org/10.1016/j.foodhyd.2019.105539  
  • Loukri, A., Kyriakoudi, A., Oliinychenko, Y., Stratakos, A.C., Lazaridou, A. and Mourtzinos, I. (2024). Preparation and characterization of chitosan-citric acid edible films loaded with Cornelian cherry pomace extract as active packaging materials. Food Hydrocolloids 150, 109687. https://doi.org/10.1016/j.foodhyd.2023.109687  
  • Martínez‐Tenorio, Y., Ramírez‐Corona, N., Jiménez‐Munguía M.T., López‐Malo, A. and Mani‐López, E. (2024). Development of antifungal packaging from low‐density polyethylene with essential oil of oregano and potassium sorbate.  Packaging Technology and Science 37(7), 641–53. https://doi.org/10.1002/pts.2813  
  • Martins, M.P., de Sousa, R.S., Dagostin, J.L.A., Franco, T.S; de Muñiz, G.I.B. and Masson, M.L. (2022). Impact of clove essential oil and potassium sorbate incorporation on cassava starch‐based films reinforced peach palm cellulose nanofibrils. Journal of Food Processing and Preservation 46(10), e16867. https://doi.org/10.1111/jfpp.16867  
  • Mohammed, A.A.B.A., Hasan, Z, Omran A.A., Elfaghi, A.M., Ali, Y.H., Akeel, N.A.A., Ilyas, R.A. and Sapuan, S.M. (2023). Effect of sugar palm fibers on the properties of blended wheat starch/polyvinyl alcohol (PVA) -based biocomposite films. Journal of Materials Research and Technology 24, 1043–55. https://doi.org/10.1016/j.jmrt.2023.02.027  
  • Moreno-Ricardo, M.A., Gómez-Contreras, P., González-Delgado, Á.D., Hernández-Fernández, J. and Ortega-Toro, R. (2024). Development of films based on chitosan, gelatin and collagen extracted from bocachico scales (Prochilodus magdalenae). Heliyon 10(3), e25194. https://doi.org/10.1016/j.heliyon.2024.e25194  
  • Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A. (2022). Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273  
  • Muñoz-Suarez, A. M., Cortés-Rodríguez, M., & Ortega-Toro, R. (2024). Biodegradable films based on tilapia collagen (Oreochromis sp): improvement of properties with PLA and PCL bilayers with potential use in sustainable food packaging. Revista Mexicana de Ingeniera Química, 23(3). https://doi.org/10.24275/rmiq/Alim24326
  • Nurfani, E., Lailani, A., Kesuma, W.A.P., Anrokhi, M.S., Kadja, G.T.M. and Rozana, M. (2021). UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis. Optical Materials 112, 110768. https://doi.org/10.1016/j.optmat.2020.110768  
  • Ortega‐Toro, R., Collazo‐Bigliardi, S., Talens, P. and Chiralt, A. (2016). Influence of citric acid on the properties and stability of starch‐polycaprolactone based films. Journal of Applied Polymer Science 133(2). https://doi.org/10.1002/app.42220  
  • Ortega-Toro, R., Santagata, G., Gomez, G., Cerruti, P., Talens, P., Chiralt, A. and Malinconico, M. (2016). Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone). Carbohydrate Polymers 147, 16-27. https://doi.org/10.1016/j.carbpol.2016.03.070
  • Petaloti, A.I., Makri, S., and Achilias, D.S. (2024). Bioactive edible gel films based on wheat flour and glucose for food packaging applications. Gels 10(2), 105. https://doi.org/10.3390/gels10020105  
  • Ribeiro-Sanches, M.A., Camelo-Silva, C., Tussolini, L., Tussolini, M., Zambiazi, R.C. and Becker-Pertuzatti, P. (2021). Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chemistry 343, 128430. https://doi.org/10.1016/j.foodchem.2020.128430  
  • Rivera Leiva, A.F., Hernández-Fernández, J. and Ortega-Toro, R. (2022). Active films based on starch and wheat gluten (Triticum vulgare) for shelf-life extension of carrots. Polymers 14(23), 5077. https://doi.org/10.3390/polym14235077  
  • Sapuła, P., Bialik-Wąs, K., & Malarz, K. (2023). Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, Vol. 15, Page 253, 15(1), 253. https://doi.org/10.3390/PHARMACEUTICS1501025  
  • Shen, G., Yu, G., Wu, H., Li, S., Hou, X., Li, M., Li, Q., Liu, X., Zhou, M., Chen, A. and Zhang, Z. (2021). Incorporation of lipids into wheat bran cellulose/wheat gluten composite film improves its water resistance properties. Membranes, 12(1), 18. https://doi.org/10.3390/membranes12010018  
  • Singh, R., Sharma, R., Shaqib, M., Sarkar, A., and Chauhan, K.D. Biodegradable polymers as packaging materials. (2021). In Biopolymers and their industrial applications. Pp. 245-259. Elsevier. https://doi.org/10.1016/B978-0-12-819240-5.00010-9  
  • Stoica, M., Bichescu, C.I., Crețu, C. M., Dragomir, M., Ivan, A.S., Podaru, G.M., ... and Stuparu-Crețu, M. (2024). Review of bio-based biodegradable Polymers: smart solutions for sustainable food packaging. Foods 13(19), 3027. https://doi.org/10.3390/foods13193027   
  • Suárez-Castillo, G. M., Salcedo-Guadalupe, J. G., Contreras-Lozano, K. P., Rangel-Pérez, M. G., Cervera-Ricardo, M. A., & Figueroa-Flórez, J. A. (2024). Increase in the degree of substitution of cassava starches by dual modification processes. Revista Mexicana de Ingeniera Quimica, 23(3). https://doi.org/10.24275/RMIQ/POLY24303
  • Thakur, M., Majid, I., Hussain, S. and Nanda, V. (2021). Poly (ε‐caprolactone): a potential polymer for biodegradable food packaging applications. Packaging Technology and Science 34(8), 449-461. https://doi.org/10.1002/pts.2572  
  • Türe, H., Gällstedt M. and Hedenqvist, M.S. (2012). Antimicrobial compression-moulded wheat gluten films containing potassium sorbate. Food Research International 45(1), 109–15. https://doi.org/10.1016/j.foodres.2011.10.012  
  • Wang, J., Sun, X., Xu, X., Sun, Q., Li, M., Wang, Y. and Xie, F. (2022). Wheat flour-based edible films: effect of gluten on the rheological properties, structure, and film characteristics. International Journal of Molecular Sciences 23 (19), 11668. https://doi.org/10.3390/ijms231911668  
  • Wei, B., Sun, B., Zhang, B., Long, J., Chen, L. and Tian, Y. (2016). Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydrate Polymers 136, 1203–8. https://doi.org/10.1016/j.carbpol.2015.10.025