Vol. 24, No. 3 (2025), Alim25633 https://doi.org/10.24275/rmiq/Alim25633


Calcium carbonate addition decreases the in vitro starch digestibility of wheat bread


 

Authors

L. Acosta-Domínguez, R.M. Mata-Ramirez, E.J. Vernon-Carter, J. Alvarez-Ramirez, A. Garcia-Hernandez, C.A. Roldan-Cruz, S. Garcia-Diaz


Abstract

The objective was to prepare white bread with decreased starch digestibility via the incorporation of small amounts of calcium carbonate. The addition of calcium carbonate increased the pH, decreased the titratable acidity and increased the soluble protein content. FTIR analysis showed that calcium carbonate increased the structured water content and modified the protein secondary structure by increasing coils and β-sheet. The short-range ordered and hydrated starch structures determined by FTIR increased, which was seen as indicative of the formation of crosslinked starch networks. The in vitro starch digestibility indicated that the calcium carbonate decreased the rapidly digestible and slowly digestible starch fractions by about 33 and 10%, respectively while increasing the resistant starch fraction by about 160% relative to the control bread. Principal component analysis revealed the existent relation between the reduced starch digestibility linked to the formation of ordered starch structures mediated by calcium crosslinking, which limited the binding of amylolytic enzymes to the starch chains.


Keywords

White bread, calcium carbonate, FTIR, in vitro digestibility.


References

  • AACC International. Approved Methods of Analysis. Method 02-52.01. Hydrogen-Ion Activity (pH). Method 44-15.02. Electrometric Method; St. Paul, MN, U.S.A., 999.
  • Alsuhaibani, A. (2018). Rheological and nutritional properties and sensory evaluation of bread fortified with natural sources of calcium. Journal of Food Quality, 2018, 8308361. https://doi.org/10.1155/2018/8308361

 

  • AOAC (2000) Official Methods of Analysis. 17th Edition. The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  • Bajka, B. H., Pinto, A. M., Ahn-Jarvis, et al. (2021). The impact of replacing wheat flour with cellular legume powder on starch bioaccessibility, glycaemic response and bread roll quality: A double-blind randomised controlled trial in healthy participants. Food Hydrocolloids, 114, 106565. https://doi.org/10.1016/j.foodhyd.2020.106565

 

  • Bello-Perez, L. A., Agama-Acevedo, E., Garcia-Valle, D. E., & Alvarez-Ramirez, J. (2019). A multiscale kinetics model for the analysis of starch amylolysis. International journal of biological macromolecules, 122, 405-409. http://doi.org/10.1016/j.ijbiomac.2018.10.161
  • Chatakanonda, P., Varavinit, S. & Chinachoti, P. (2000). Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT-Food Science and Technology, 33, 276-284. https://doi.org/10.1006/fstl.2000.0662

 

  • Cornejo-Villegas, M. D. L. Á., Rincón-Londoño, N., Real-López, D. & Rodríguez-García, M. E. (2018). Effect of Ca2+ ions on the pasting, morphological, structural, vibrational, and mechanical properties of corn starch–water system. Journal of Cereal Science, 79, 174-182. https://doi.org/10.1016/j.jcs.2017.10.003

 

  • Dong, A., Huang, P. & Caughey, W. S. (1990). Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry, 29, 3303-3308. https://doi.org/10.1021/bi00465a022
  • Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33-50. PMID: 1330528

 

  • Garcia-Hernandez, A., Roldan-Cruz, C., Vernon-Carter, E. J. & Alvarez-Ramirez, J. (2022). Effects of leavening agent and time on bread texture and in vitro starch digestibility. Journal of Food Science and Technology, 59, 1922-1930. https://doi.org/10.1007/s13197-021-05206-1
  • Ge, F., Wu, P. & Chen, X. D. (2021). Evolutions of rheology, microstructure and starch hydrolysis of pumpkin‐enriched bread during simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56, 6000-6010.  https://doi.org/10.1111/ijfs.15273

 

  • George, M. & Abraham, T. E. (2007). pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. International Journal of Pharmaceutics, 335, 123-129. https://doi.org/10.1016/j.ijpharm.2006.11.009
  • Giz, A. S., Berberoglu, M., Bener, S., Aydelik-Ayazoglu, S., Bayraktar, H., Alaca, B. E., & Catalgil-Giz, H. (2020). A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. International Journal of Biological Macromolecules, 148, 49-55. https://doi.org/10.1016/j.ijbiomac.2020.01.103

 

  • Goda, T., Watanabe, J., Takai, M. & Ishihara, K. (2006). Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer, 47, 1390-1396. https://doi.org/10.1016/j.polymer.2005.12.04
  • Godoy-Ramírez, A., Rodríguez-Huezo, M. E., Lara-Corona, V.H., Vernon_Carter, E.J., & Alvarez-Ramirez, J. (2024). Wheat bread supplemented with potato peel flour: color, molecular organization, texture.  Revista Mexicana de Ingeniería Química, 23, Alim24201. https://doi.org/10.24275/rmiq/Alim24201

 

  • Koksel, H., Samray, M. N., Masatcioglu, T. M., & Koksel, F. (2025). Quality of resistant starch‐enriched breadcrumbs extrudates. Cereal Chemistry102(2), 364-376. https://doi.org/10.1002/cche.10863
  • Kwaśny, D., Borczak, B., Sikora, M., & Kapusta-Duch, J. (2022). Preliminary study on the influence of the polyphenols of different groups on the digestibility of wheat starch, measured by the content of resistant starch. Applied Sciences12(21), 10859. https://doi.org/10.3390/app122110859

 

  • Korompokis, K., Deleu, L. J., De Brier, N. & Delcour, J. A. (2021). Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase. Food Chemistry, 362, 130203. https://doi.org/10.1016/j.foodchem.2021.130203

 

  • Liu, H., Guan, Y., Wei, D., Gao, C., Yang, H. & Yang, L. (2016). Reinforcement of injectable calcium phosphate cement by gelatinized starches. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104, 615-625. https://doi.org/10.1002/jbm.b.33434
  • Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J. & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45-52. https://doi.org/10.1016/j.foodhyd.2013.08.013

 

  • Meraz, M., Vernon-Carter, E. J., Bello-Perez, L. A. & Alvarez-Ramirez, J. (2022). Mathematical modeling of gastrointestinal starch digestion-blood glucose-insulin interactions. Biomedical Signal Processing and Control, 77, 103812. https://doi.org/10.1016/j.bspc.2022.103812

 

  • Morales-Huerta, A., Vernon-Carter, E. J., Alvarez-Ramirez, J., & Román-Guerrero, A. (2025). Effect of microwave dry-heat treatment of wheat flour in the in vitro digestibility of bread starch. International Journal of Biological Macromolecules, 144392. https://doi.org/10.1016/j.ijbiomac.2025.144392
  • Ono, T., Katho, S. & Mothizuki, K. (1993). Influences of calcium and pH on protein solubility in soybean milk. Bioscience, Biotechnology, and Biochemistry, 57, 24-28. https://doi.org/10.1271/bbb.57.24

 

  • Ramos-Villacob, V., Figueroa-Flórez, J. G., Salcedo-Mendoza, J. E., Hernández-Ruidíaz, J. E., Romero-Verbel, L. A. (2024). Development of modified cassava starches by ultrasound-assisted amylose/lauric acid. Revista Mexicana de Ingeniería Química, 23, Alim24109.
  • https://doi.org/10.24275/rmiq/Alim24109

 

  • Reshmi, S. K., Sudha, M. L. & Shashirekha, M. N. (2017). Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments. Food Chemistry, 237, 957-965. https://doi.org/10.1016/j.foodchem.2017.05.138
  • Roldan-Cruz, C., Garcia-Diaz, S., Garcia-Hernandez, A., Alvarez-Ramirez, J. & Vernon-Carter, E. J. (2020). Microstructural changes and in vitro digestibility of maize starch treated with different calcium compounds used in nixtamalization processes. Starch - Stärke, 72, 1900303. https://doi.org/10.1002/star.201900303

 

  • Saadi, S., Saari, N., Ghazali, H. M., Abdulkarim, S. M., Hamid, A. A. & Anwar, F. (2022). Gluten proteins: Enzymatic modification, functional and therapeutic properties. Journal of Proteomics, 251, 104395. https://doi.org/10.1016/j.jprot.2021.104395
  • Salinas, M. V., Zuleta, A., Ronayne, P. & Puppo, M. C. (2016). Wheat bread enriched with organic calcium salts and inulin. A bread quality study. Journal of Food Science and Technology, 53, 491-500. https://doi.org/10.1007/s13197-015-2008-8

 

  • Sardabi, F., Azizi, M. H., Gavlighi, H. A. & Rashidinejad, A. (2021). The effect of Moringa peregrina seed husk on the in vitro starch digestibility, microstructure, and quality of white wheat bread. LWT, 136, 110332. https://doi.org/10.1016/j.lwt.2020.110332
  • Scazzina, F., Del Rio, D., Pellegrini, N. & Brighenti, F. (2009). Sourdough bread: Starch digestibility and postprandial glycemic response. Journal of Cereal Science, 49, 419-421. https://doi.org/10.1016/j.jcs.2008.12.008

 

  • Sluimer, P., 2005. Principles of Breadmaking: Functionality of Raw Materials and Process Steps. American Association of Cereal Chemists, St. Paul.
  • Whitney, K. & Simsek, S. (2017). Reduced gelatinization, hydrolysis, and digestibility in whole wheat bread in comparison to white bread. Cereal Chemistry, 94, 991-1000. https://doi.org/10.1094/CCHEM-05-17-0116-R

 

  • van Soest, J. J., Tournois, H., de Wit, D. & Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279, 201-214. https://doi.org/10.1016/0008-6215(95)00270-7