- Aelterman, P., Rabaey, K., Clauwaert, P. and Verstraete, W. (2006). Microbial fuel cells for wastewater treatment. Water Science and Technology, 54(8), 9-15. https://doi.org/10.2166/wst.2006.702
- Altın, N. and Uyar, B. (2025). Increasing power generation and energy efficiency with modified anodes in algae-supported microbial fuel cells. Biomass Conversion and Biorefinery. 15,17203-17215. https://doi.org/10.1007/s13399-025-06536-2
- Apollon, W., Rusyn, I., Paucar, N. E., Hibbert, M., Kamaraj, S. K. and Sato, C. (2025). Energy recovery from organic wastes using microbial fuel cells: Traditional and nonconventional organic substrates. Resources 14(3), 47. https://doi.org/10.3390/resources14030047
- Aznar-Sánchez, J. A., García-Gómez, J. J., Velasco-Muñoz, J. F. and Carretero-Gómez, A. (2018). Mining waste and its sustainable management: Advances in worldwide research. Minerals 8(7), 284. https://doi.org/10.3390/min8070284
- Bard, A. J. (1985). Standard potentials in aqueous solutions. Routledge, New York. https://doi.org/10.1201/9780203738764
- Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A. and de Moraes, D. R. (2021). Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis. Water, Air, and Soil Pollution 232(7), 306. https://doi.org/10.1007/s11270-021-05224-x
- Borole, A. P., Hamilton, C. Y., Vishnivetskaya, T., Leak, D. and Andras, C. (2009). Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochemical Engineering Journal 48(1), 71-80. https://doi.org/10.1016/j.bej.2009.08.008
- Calderon, A. R. M., Alorro, R. D., Tadesse, B., Yoo, K. and Tabelin, C. B. (2020). Repurposing of nickeliferous pyrrhotite from mine tailings as magnetic adsorbent for the recovery of gold from chloride solution. Resources, Conservation and Recycling 161, 104971. https://doi.org/10.1016/j.resconrec.2020.104971
- Chandrasekaran, U., Luo, X., Wang, Q. and Shu, K. (2020). Are there unidentified factors involved in the germination of nanoprimed seeds? Frontiers in Plant Science 11, https://doi.org/10.3389/fpls.2020.00832
- Choudhury, P., Uday, U. S. P., Mahata, N., Nath Tiwari, O., Narayan Ray, R., Kanti Bandyopadhyay, T. and Bhunia, B. (2017). Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives. Renewable and Sustainable Energy Reviews 79, 372-389. https://doi.org/10.1016/j.rser.2017.05.098
- Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K., Titirici, M.-M., Ieropoulos, I. and Di Lorenzo, M. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta 192, 89-98. https://doi.org/10.1016/j.electacta.2016.01.112
- Cui, W., Espley, S., Liang, W., Yin, S. and Dong, X. (2025). Microbial fuel cells for power generation by treating mine tailings: Recent advances and emerging trends. Sustainability 17(2), 466. https://doi.org/10.3390/su17020466
- Damoah, E. and Herat, S. (2022). A review of sustainable management of mining waste. International Journal of Environment and Waste Management 29(3), 342. https://doi.org/10.1504/IJEWM.2022.122684
- Douma, M. N. K., Ondel, O., Tsafack, P., Mieyeville, F. and Kengnou, N. A. (2025). Microbial fuel cell: Investigation of the electrical power production of cow dung and human faeces using 3D-printed reactors. Bioresource Technology Reports 29, 102036. https://doi.org/10.1016/j.biteb.2025.102036
- Dróżdż, D., Malińska, K., Postawa, P., Stachowiak, T. and Nowak, D. (2022). End-of-life management of biodegradable plastic dog poop bags through composting of green waste. Materials 15(8), 2869. https://doi.org/10.3390/ma15082869
- Dunaj, S. J., Vallino, J. J., Hines, M. E., Gay, M., Kobyljanec, C. and Rooney-Varga, J. N. (2012). Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environmental Science & Technology 46(3), 1914-1922. https://doi.org/10.1021/es2032532
- Elhenawy, S., Khraisheh, M., AlMomani, F., Al-Ghouti, M. and Hassan, M. K. (2022). From waste to watts: Updates on key applications of microbial fuel cells in wastewater treatment and energy production. Sustainability 14(2), 955. https://doi.org/10.3390/su14020955
- Fiães, G. M. F., Rosa, A. P., Nascimento, L. A., Del Rei Passos, F. L. and Borges, A. C. (2025). Biodegradation of dog waste through anaerobic digestion at different temperatures. Waste and Biomass Valorization 16(4), 1973–1985. https://doi.org/10.1007/s12649-024-02761-4
- Foudhaili, T., Rakotonimaro, T. V., Neculita, C. M., Coudert, L. and Lefebvre, O. (2019). Comparative efficiency of microbial fuel cells and electrocoagulation for the treatment of iron-rich acid mine drainage. Journal of Environmental Chemical Engineering 7(3), 103149. https://doi.org/10.1016/j.jece.2019.103149
- Ghassemi, A. (2001). Handbook of Pollution Control and Waste Minimization. CRC Press. https://doi.org/10.1201/9780203907931
- Gonzalez Olias, L., Cameron, P. J. and Di Lorenzo, M. (2019). Effect of electrode properties on the performance of a photosynthetic microbial fuel cell for atrazine detection. Frontiers in Energy Research 7. https://doi.org/10.3389/fenrg.2019.00105
- Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production 122, 287-307. https://doi.org/10.1016/j.jclepro.2016.02.022
- Habibul, N., Hu, Y. and Sheng, G.-P. (2016). Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. Journal of Hazardous Materials, 318, 9–14. https://doi.org/10.1016/j.jhazmat.2016.06.041
- IEA. (2025a). Electricity. Disponible en: https://www.iea.org/reports/electricity-2025. Accesado 10 septiembre 2025.
- IEA. (2025b). Growth in global electricity demand is set to accelerate in the coming years as power-hungry sectors expand. Disponible en: https://www.iea.org/news/growth-in-global-electricity-demand-is-set-to-accelerate-in-the-coming-years-as-power-hungry-sectors-expand. Accesado 14 febrero 2025.
- ISO 11466. (1995). Soil quality. Extraction of trace elements soluble in aqua regia. Disponible en: https://www.iso.org/standard/19418.html. Accesado 10 enero 2025.
- Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press. Boca Raton. https://doi.org/10.1201/b10158
- Lim, B. and Alorro, R. D. (2021). Technospheric mining of mine wastes: A review of applications and challenges. Sustainable Chemistry 2(4), 686-706. https://doi.org/10.3390/suschem2040038
- Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology 40(17), 5181-5192. https://doi.org/10.1021/es0605016
- Logan, B. E. and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095), 686-690. https://doi.org/10.1126/science.1217412
- Lorenzo-Tallafigo, J., Iglesias-González, N., Romero-García, A., Mazuelos, A., Ramírez del Amo, P., Romero, R. and Carranza, F. (2022). The reprocessing of hydrometallurgical sulphidic tailings by bioleaching: The extraction of metals and the use of biogenic liquors. Minerals Engineering 176, 107343. https://doi.org/10.1016/j.mineng.2021.107343
- Luo, Y., Zhang, R., Liu, G., Li, J., Li, M. and Zhang, C. (2010). Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials 176(1-3), 759-764. https://doi.org/10.1016/j.jhazmat.2009.11.100
- Mathuriya, A.S. and Yakhmi, J. V. (2014). Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters 12, 483-494. https://doi.org/10.1007/s10311-014-0474-2
- Memon, M. F., Md Hasan, K. N. B. and Memon, Z. A. (2025). Sustainable energy generation from organic substrates using portable microbial fuel cells: Enhancing precision agriculture in rural regions of Malaysia. Geological Journal. https://doi.org/10.1002/gj.5199
- Nandy, A., Kumar, V., Khamrai, M. and Kundu, P. P. (2015). MFC with vermicompost soil: power generation with additional importance of waste management. RSC Advances 5(51), 41300-41306. https://doi.org/10.1039/C5RA00870K
- Nelson, D. and Sommers, L. E. (1983). Total carbon, organic carbon and organic matter. In Methods of soil analysis: Part 2 chemical and microbiological properties (2nd Edition, pp. 1-1159).
- Pandit, S., Savla, N., Sonawane, J. M., Sani, A. M., Gupta, P. K., Mathuriya, A. S., Rai, A. K., Jadhav, D. A., Jung, S. P. and Prasad, R. (2021). Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 7(3), 169. https://doi.org/10.3390/fermentation7030169
- Penakalapati, G., Swarthout, J., Delahoy, M. J., McAliley, L., Wodnik, B., Levy, K. and Freeman, M. C. (2017). Exposure to animal feces and human health: A systematic review and proposed research priorities. Environmental Science & Technology 51(20), 11537-11552. https://doi.org/10.1021/acs.est.7b02811
- Pérez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G. and Shruti, V. C. (2021). A central role for fecal matter in the transport of microplastics: An updated analysis of new findings and persisting questions. Journal of Hazardous Materials Advances 4, 100021. https://doi.org/10.1016/j.hazadv.2021.100021
- Petersen, H. A., Myren, T. H. T., O’Sullivan, S. J. and Luca, O. R. (2021). Electrochemical methods for materials recycling. Materials Advances 2(4), 1113-1138. https://doi.org/10.1039/D0MA00689K
- Pous, N., Balaguer, M. D., Colprim, J., and Puig, S. (2018). Opportunities for groundwater microbial electro‐remediation. Microbial Biotechnology 11(1), 119-135. https://doi.org/10.1111/1751-7915.12866
- Rabaey, K., Lissens, G., Siciliano, S. D. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 25(18), 1531-1535. https://doi.org/10.1023/A:1025484009367
- Rajesh, S. and Kumawat, A. S. (2023). Opportunities for microbial fuel cells to utilize post-harvest agricultural residues. Ionics, 29(11), 4417–4435. https://doi.org/10.1007/s11581-023-05175-9
- Ray, A., Bhonsle, A. K., Singh, J., Trivedi, J. and Atray, N. (2025). Examining alternative carbon resources for sustainable energy generation: A comprehensive review. Next Energy 6, 100194. https://doi.org/10.1016/j.nxener.2024.100194
- Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. En: Methods of Soil Analysis: Part 3. Chemical Methods. Sparks D.L., Page, A.L., Helmke, R.J., Loeppert, R.H., Soltanpour, P. N., Tabatabai M.A., Johston, C. T., Summer, M. E. (eds.), Pp. 437-474. American Society of Agronomy.
- Ríos-Guzmán, J.C., Alonso-Vargas, M., Cadena-Ramírez, A., Juárez López, K. and Portillo-Torres, L.A. (2024). Enhanced denitrification in Paracoccus denitrificans PD1222 by electrical field application. Revista Mexicana de Ingeniería Química 23(1):Bio24136. https://doi.org/10.24275/rmiq/Bio24136
- Rowell, D. L. (1994). Soil science: Methods and applications. Routledge, London.
- Saad, A., Ndiritu, H. and Hawi, M. (2025). Electricity generation from sewage wasterwater in a microbial fuel cell pilot power plant using aluminium cathodes. Journal of Advance Research in Electrical & Electronics Engineering 10(1), 1-9. https://doi.org/https://doi.org/10.53555/rae7bs08
- SEMARNAT (2007). Norma Oficial Mexicana NOM-147.SEMARNAT-2004. Gobierno Federal. Mexico. Diario Oficial. 1–67. Mexico. Accessed June 21, 2023. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf .
- Silva-Palacios, F., Salvador-Salinas, A., Rojas-Flores, S., De La Cruz-Noriega, M., Nazario-Naveda, R., Gallozzo-Cardenas, M., Delfin-Narciso, D. and Díaz, F. (2023). En: Proceedings of the 5th International Conference on Clean Energy and Electrical Systems. Gaber, H. (eds), CEES 2023. Lecture Notes in Electrical Engineering 1058. Springer, Singapore. https://doi.org/10.1007/978-981-99-3888-9_24. https://doi.org/10.1007/978-981-99-3888-9_24
- USDA. (2005). Composting dog waste. Disponible en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.epa.gov/system/files/documents/2022-11/Composting-Dog-Waste-Booklet-Alaska.pdf. Accesado 10 September 2025.
- USEPA (2001). Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS) volume III: Part A. Washington, DC: U.S. Environmental Protection Agency. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part.
- Wang, Y., Li, A. and Cui, C. (2021). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere 265, 129071. https://doi.org/10.1016/j.chemosphere.2020.129071
- Wu, M. S., Xu, X., Zhao, Q. and Wang, Z. Y. (2017). Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Advances, 7(84), 53433-53438. https://doi.org/10.1039/C7RA11103G
- Yavor, K. M., Lehmann, A. and Finkbeiner, M. (2020). Environmental impacts of a pet dog: An LCA case study. Sustainability 12(8), 3394. https://doi.org/10.3390/su12083394
- Yousefi, R., Mardanpour, M. M. and Yaghmaei, S. (2021). Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine. Scientific Reports 11(1), 14346. https://doi.org/10.1038/s41598-021-93844-y
- Zhang, C., Li, M., Liu, G., Luo, H. and Zhang, R. (2009). Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials 172(1), 465-471. https://doi.org/10.1016/j.jhazmat.2009.07.027
|