Vol. 24, No. 3 (2025), Bio25582 https://doi.org/10.24275/rmiq/Bio25582


Dog feces with glucose-feed were the most effective to produce electricity in microbial fuel cells


 

Authors

N. Gómez-Flores, Y.S. Perea-Vélez, R. Carrillo-González, J.E. Corona-Sánchez, D. Tapia-Maruri, MCA González-Chávez


Abstract

Microbial fuel cells (MFCs) generate electricity through microbial metabolism, which is an efficient, renewable, and sustainable biological alternative for domestic and potential commercial applications. Mine wastes and dog feces are common and abundant residues contributing to environmental pollution and human health concerns. This study analyzed the production of electricity by using mine waste, dog feces, and vermicompost as MFC feedstocks and tested two sources of carbon (saccharose and glucose) as co-substrates in the feeding solution. Dog feces produced the longest current output (41 days), the maximum voltage per day (0.33 V), and the highest cumulative power density (15 W cm-3). Dog feces with glucose generated the highest power density (5.6 to 15 W cm-3), while saccharose and mine waste produced a maximum current output of 0.24 V day-1 and a cumulative power density of ~8 W cm-3. There were changes in the mine waste-metal concentration. MFC can be a practical solution to the aged environmental concern of the disposal of wastes, especially dog feces. Moreover, it may participate in the removal of Zn present in mine wastes. It may help the worldwide energy crisis, but several aspects must be optimized to bring it to the commercial level.


Keywords

Bioelectrochemical hybrid technology, Microbial electro-remediation, Mine residues.


References

  • Aelterman, P., Rabaey, K., Clauwaert, P. and Verstraete, W. (2006). Microbial fuel cells for wastewater treatment. Water Science and Technology, 54(8), 9-15. https://doi.org/10.2166/wst.2006.702
  • Altın, N. and Uyar, B. (2025). Increasing power generation and energy efficiency with modified anodes in algae-supported microbial fuel cells. Biomass Conversion and Biorefinery. 15,17203-17215. https://doi.org/10.1007/s13399-025-06536-2
  • Apollon, W., Rusyn, I., Paucar, N. E., Hibbert, M., Kamaraj, S. K. and Sato, C. (2025). Energy recovery from organic wastes using microbial fuel cells: Traditional and nonconventional organic substrates. Resources 14(3), 47. https://doi.org/10.3390/resources14030047
  • Aznar-Sánchez, J. A., García-Gómez, J. J., Velasco-Muñoz, J. F. and Carretero-Gómez, A. (2018). Mining waste and its sustainable management: Advances in worldwide research. Minerals 8(7), 284. https://doi.org/10.3390/min8070284
  • Bard, A. J. (1985). Standard potentials in aqueous solutions.  Routledge, New York. https://doi.org/10.1201/9780203738764
  • Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A. and de Moraes, D. R. (2021). Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis. Water, Air, and Soil Pollution 232(7), 306. https://doi.org/10.1007/s11270-021-05224-x
  • Borole, A. P., Hamilton, C. Y., Vishnivetskaya, T., Leak, D. and Andras, C. (2009). Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochemical Engineering Journal 48(1), 71-80. https://doi.org/10.1016/j.bej.2009.08.008
  • Calderon, A. R. M., Alorro, R. D., Tadesse, B., Yoo, K. and Tabelin, C. B. (2020). Repurposing of nickeliferous pyrrhotite from mine tailings as magnetic adsorbent for the recovery of gold from chloride solution. Resources, Conservation and Recycling 161, 104971. https://doi.org/10.1016/j.resconrec.2020.104971
  • Chandrasekaran, U., Luo, X., Wang, Q. and Shu, K. (2020). Are there unidentified factors involved in the germination of nanoprimed seeds? Frontiers in Plant Science 11, https://doi.org/10.3389/fpls.2020.00832
  • Choudhury, P., Uday, U. S. P., Mahata, N., Nath Tiwari, O., Narayan Ray, R., Kanti Bandyopadhyay, T. and Bhunia, B. (2017). Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives. Renewable and Sustainable Energy Reviews 79, 372-389. https://doi.org/10.1016/j.rser.2017.05.098
  • Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K., Titirici, M.-M., Ieropoulos, I. and Di Lorenzo, M. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta 192, 89-98. https://doi.org/10.1016/j.electacta.2016.01.112
  • Cui, W., Espley, S., Liang, W., Yin, S. and Dong, X. (2025). Microbial fuel cells for power generation by treating mine tailings: Recent advances and emerging trends. Sustainability 17(2), 466. https://doi.org/10.3390/su17020466
  • Damoah, E. and Herat, S. (2022). A review of sustainable management of mining waste. International Journal of Environment and Waste Management 29(3), 342. https://doi.org/10.1504/IJEWM.2022.122684
  • Douma, M. N. K., Ondel, O., Tsafack, P., Mieyeville, F. and Kengnou, N. A. (2025). Microbial fuel cell: Investigation of the electrical power production of cow dung and human faeces using 3D-printed reactors. Bioresource Technology Reports 29, 102036. https://doi.org/10.1016/j.biteb.2025.102036
  • Dróżdż, D., Malińska, K., Postawa, P., Stachowiak, T. and Nowak, D. (2022). End-of-life management of biodegradable plastic dog poop bags through composting of green waste. Materials 15(8), 2869. https://doi.org/10.3390/ma15082869
  • Dunaj, S. J., Vallino, J. J., Hines, M. E., Gay, M., Kobyljanec, C. and Rooney-Varga, J. N. (2012). Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environmental Science & Technology 46(3), 1914-1922. https://doi.org/10.1021/es2032532
  • Elhenawy, S., Khraisheh, M., AlMomani, F., Al-Ghouti, M. and Hassan, M. K. (2022). From waste to watts: Updates on key applications of microbial fuel cells in wastewater treatment and energy production. Sustainability 14(2), 955. https://doi.org/10.3390/su14020955
  • Fiães, G. M. F., Rosa, A. P., Nascimento, L. A., Del Rei Passos, F. L. and Borges, A. C. (2025). Biodegradation of dog waste through anaerobic digestion at different temperatures. Waste and Biomass Valorization 16(4), 1973–1985. https://doi.org/10.1007/s12649-024-02761-4
  • Foudhaili, T., Rakotonimaro, T. V., Neculita, C. M., Coudert, L. and Lefebvre, O. (2019). Comparative efficiency of microbial fuel cells and electrocoagulation for the treatment of iron-rich acid mine drainage. Journal of Environmental Chemical Engineering 7(3), 103149. https://doi.org/10.1016/j.jece.2019.103149
  • Ghassemi, A.  (2001). Handbook of Pollution Control and Waste Minimization. CRC Press. https://doi.org/10.1201/9780203907931
  • Gonzalez Olias, L., Cameron, P. J. and Di Lorenzo, M. (2019). Effect of electrode properties on the performance of a photosynthetic microbial fuel cell for atrazine detection. Frontiers in Energy Research 7. https://doi.org/10.3389/fenrg.2019.00105
  • Gude, V. G. (2016). Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production 122, 287-307. https://doi.org/10.1016/j.jclepro.2016.02.022
  • Habibul, N., Hu, Y. and Sheng, G.-P. (2016). Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. Journal of Hazardous Materials, 318, 9–14. https://doi.org/10.1016/j.jhazmat.2016.06.041
  • IEA. (2025a). Electricity. Disponible en: https://www.iea.org/reports/electricity-2025. Accesado 10 septiembre 2025.
  • IEA. (2025b). Growth in global electricity demand is set to accelerate in the coming years as power-hungry sectors expand. Disponible en: https://www.iea.org/news/growth-in-global-electricity-demand-is-set-to-accelerate-in-the-coming-years-as-power-hungry-sectors-expand. Accesado 14 febrero 2025.
  • ISO 11466. (1995). Soil quality. Extraction of trace elements soluble in aqua regia. Disponible en: https://www.iso.org/standard/19418.html. Accesado 10 enero 2025.
  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press. Boca Raton.  https://doi.org/10.1201/b10158
  • Lim, B. and Alorro, R. D. (2021). Technospheric mining of mine wastes: A review of applications and challenges. Sustainable Chemistry 2(4), 686-706. https://doi.org/10.3390/suschem2040038
  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology 40(17), 5181-5192. https://doi.org/10.1021/es0605016
  • Logan, B. E. and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095), 686-690. https://doi.org/10.1126/science.1217412
  • Lorenzo-Tallafigo, J., Iglesias-González, N., Romero-García, A., Mazuelos, A., Ramírez del Amo, P., Romero, R. and Carranza, F. (2022). The reprocessing of hydrometallurgical sulphidic tailings by bioleaching: The extraction of metals and the use of biogenic liquors. Minerals Engineering 176, 107343. https://doi.org/10.1016/j.mineng.2021.107343
  • Luo, Y., Zhang, R., Liu, G., Li, J., Li, M. and Zhang, C. (2010). Electricity generation from indole and microbial community analysis in the microbial fuel cell. Journal of Hazardous Materials 176(1-3), 759-764. https://doi.org/10.1016/j.jhazmat.2009.11.100
  • Mathuriya, A.S. and Yakhmi, J. V. (2014). Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters 12, 483-494. https://doi.org/10.1007/s10311-014-0474-2
  • Memon, M. F., Md Hasan, K. N. B. and Memon, Z. A. (2025). Sustainable energy generation from organic substrates using portable microbial fuel cells: Enhancing precision agriculture in rural regions of Malaysia. Geological Journal. https://doi.org/10.1002/gj.5199
  • Nandy, A., Kumar, V., Khamrai, M. and Kundu, P. P. (2015). MFC with vermicompost soil: power generation with additional importance of waste management. RSC Advances 5(51), 41300-41306. https://doi.org/10.1039/C5RA00870K
  • Nelson, D. and Sommers, L. E. (1983). Total carbon, organic carbon and organic matter. In Methods of soil analysis: Part 2 chemical and microbiological properties (2nd Edition, pp. 1-1159).
  • Pandit, S., Savla, N., Sonawane, J. M., Sani, A. M., Gupta, P. K., Mathuriya, A. S., Rai, A. K., Jadhav, D. A., Jung, S. P. and Prasad, R. (2021). Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 7(3), 169. https://doi.org/10.3390/fermentation7030169
  • Penakalapati, G., Swarthout, J., Delahoy, M. J., McAliley, L., Wodnik, B., Levy, K. and Freeman, M. C. (2017). Exposure to animal feces and human health: A systematic review and proposed research priorities. Environmental Science & Technology 51(20), 11537-11552. https://doi.org/10.1021/acs.est.7b02811
  • Pérez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G. and Shruti, V. C. (2021). A central role for fecal matter in the transport of microplastics: An updated analysis of new findings and persisting questions. Journal of Hazardous Materials Advances 4, 100021. https://doi.org/10.1016/j.hazadv.2021.100021
  • Petersen, H. A., Myren, T. H. T., O’Sullivan, S. J. and Luca, O. R. (2021). Electrochemical methods for materials recycling. Materials Advances 2(4), 1113-1138. https://doi.org/10.1039/D0MA00689K
  • Pous, N., Balaguer, M. D., Colprim, J., and Puig, S. (2018). Opportunities for groundwater microbial electro‐remediation. Microbial Biotechnology 11(1), 119-135. https://doi.org/10.1111/1751-7915.12866
  • Rabaey, K., Lissens, G., Siciliano, S. D. and Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 25(18), 1531-1535. https://doi.org/10.1023/A:1025484009367
  • Rajesh, S. and Kumawat, A. S. (2023). Opportunities for microbial fuel cells to utilize post-harvest agricultural residues. Ionics, 29(11), 4417–4435. https://doi.org/10.1007/s11581-023-05175-9
  • Ray, A., Bhonsle, A. K., Singh, J., Trivedi, J. and Atray, N. (2025). Examining alternative carbon resources for sustainable energy generation: A comprehensive review. Next Energy 6, 100194. https://doi.org/10.1016/j.nxener.2024.100194
  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. En: Methods of Soil Analysis: Part 3. Chemical Methods. Sparks D.L., Page, A.L., Helmke, R.J., Loeppert, R.H., Soltanpour, P. N., Tabatabai M.A., Johston, C. T., Summer, M. E. (eds.), Pp. 437-474. American Society of Agronomy.
  • Ríos-Guzmán, J.C., Alonso-Vargas, M., Cadena-Ramírez, A., Juárez López, K. and  Portillo-Torres, L.A. (2024). Enhanced denitrification in Paracoccus denitrificans PD1222 by electrical field application. Revista Mexicana de Ingeniería Química 23(1):Bio24136. https://doi.org/10.24275/rmiq/Bio24136
  • Rowell, D. L. (1994). Soil science: Methods and applications. Routledge, London.
  • Saad, A., Ndiritu, H. and Hawi, M. (2025). Electricity generation from sewage wasterwater in a microbial fuel cell pilot power plant using aluminium cathodes. Journal of Advance Research in Electrical & Electronics Engineering 10(1), 1-9. https://doi.org/https://doi.org/10.53555/rae7bs08
  • SEMARNAT (2007). Norma Oficial Mexicana NOM-147.SEMARNAT-2004. Gobierno Federal. Mexico. Diario Oficial. 1–67. Mexico. Accessed June 21, 2023. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf .
  • Silva-Palacios, F., Salvador-Salinas, A., Rojas-Flores, S., De La Cruz-Noriega, M., Nazario-Naveda, R., Gallozzo-Cardenas, M., Delfin-Narciso, D. and Díaz, F. (2023). En: Proceedings of the 5th International Conference on Clean Energy and Electrical Systems. Gaber, H. (eds), CEES 2023. Lecture Notes in Electrical Engineering 1058. Springer, Singapore. https://doi.org/10.1007/978-981-99-3888-9_24. https://doi.org/10.1007/978-981-99-3888-9_24
  • USDA. (2005). Composting dog waste. Disponible en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.epa.gov/system/files/documents/2022-11/Composting-Dog-Waste-Booklet-Alaska.pdf. Accesado 10 September 2025.
  • USEPA (2001). Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS) volume III: Part A. Washington, DC: U.S. Environmental Protection Agency. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part.
  • Wang, Y., Li, A. and Cui, C. (2021). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere 265, 129071. https://doi.org/10.1016/j.chemosphere.2020.129071
  • Wu, M. S., Xu, X., Zhao, Q. and Wang, Z. Y. (2017). Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Advances, 7(84), 53433-53438. https://doi.org/10.1039/C7RA11103G
  • Yavor, K. M., Lehmann, A. and Finkbeiner, M. (2020). Environmental impacts of a pet dog: An LCA case study. Sustainability 12(8), 3394. https://doi.org/10.3390/su12083394
  • Yousefi, R., Mardanpour, M. M. and Yaghmaei, S. (2021). Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine. Scientific Reports 11(1), 14346. https://doi.org/10.1038/s41598-021-93844-y
  • Zhang, C., Li, M., Liu, G., Luo, H. and Zhang, R. (2009). Pyridine degradation in the microbial fuel cells. Journal of Hazardous Materials 172(1), 465-471. https://doi.org/10.1016/j.jhazmat.2009.07.027