Vol. 24, No. 3 (2025), Bio25632 https://doi.org/10.24275/rmiq/Bio25632


Kinetic and oxygen transfer assessment for Bikaverin production by Gibberella fujikuroi: Toward industrial scaling


 

Authors

D.B. Alanís-Gutiérrez, M.X. Negrete-Rodríguez, M.C. Chávez-Parga


Abstract

Gibberella fujikuroi is a filamentous fungus that produces bikaverin, a pigment with pharmacological potential. Three strains (CDBB-H-972, CDBB-H-984 and CDBB-H-270) were evaluated in systems with forced aeration, analyzing the influence of pH and aeration rate. The CDBB-H-984 strain achieved the highest biomass concentration (15.73 ± 0.33 g/L at 48 h, pH 4, 0.5 vvm), while CDBB-H-972 presented the highest yield of bikaverin (0.134 ± 0.002 g bikaverin/g biomass at 96 h, pH 3, 0.75 vvm). The volumetric oxygen transfer coefficient (kLa) reached 169.90 ± 6.28 h-1 at 48 h and a maximum of 201.50 ± 2.42 h-1 at 72 h. The three-parameter Gompertz model described growth with high accuracy (R² = 0.999), while the Luedeking–Piret model confirmed that bikaverin is a metabolite not associated with growth. Bikaverin was purified and characterized by FT-IR, and morphology was evaluated by scanning electron microscopy. The Box–Behnken design indicated that the highest production of bikaverin was obtained with the CDBB-H-972 strain at pH 3 and an aeration rate of 1 vvm. Under these conditions, the oxygen consumption rate (OUR) exceeded the transfer rate (OTR), highlighting the need to increase aeration in larger-scale systems.


Keywords

Secondary metabolites, Bikaverin, Mass transfer, Biomass, Kinetic.


References

  • Amaral, P. F. F., Freire, M. G., Rocha-Leão, M. H. M., Marrucho, I. M., Coutinho, J. A. P., & Coelho, M. A. Z. (2008). Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology and Bioengineering, 99(3), 588–598. https://doi.org/10.1002/bit.21640
  • Anama, Y. P., Díaz, R., Duarte-Alvarado, D. E., & Lagos-Burbano, T. C. (2021). Morphological and pathogenic characterization of Fusarium oxysporum in lulo (Solanum spp.). Revista de Ciencias Agrícolas, 38(1), 20–37. https://doi.org/10.22267/rcia.213801.142
  • Bailey, J. E., & Ollis, D. F. (1977). Biochemical Engineering Fundamentals. Editorial McGraw-Hill, 2nd ed. United States
  • Balan, J., Fuska, J., Kuhr, I., & Kuhrová, V. (1970). Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiologica, 15(6), 479–484. https://doi.org/10.1007/BF02880192
  • Borkertas, S., Viskelis, J., Viskelis, P., Streimikyte, P., Gasiunaite, U., & Urbonaviciene, D. (2025). Fungal Biomass Fermentation: Valorizing the Food Industry’s Waste. Fermentation, 11(6), 351. https://doi.org/10.3390/fermentation11060351
  • Chávez-Parga, M. del C., González-Ortega, O., Negrete-Rodríguez, M. de la L. X., Vallarino, I. G., Alatorre, G. G., & Escamilla-Silva, E. M. (2008). Kinetic of the gibberellic acid and bikaverin production in an airlift bioreactor. Process Biochemistry, 43(8), 855–860. https://doi.org/10.1016/J.PROCBIO.2008.04.007
  • Chávez-Parga, M. C., Hinojosa-Ventura, G., Maya-Yescas, R., & González-Hernández, J. C. (2014). Effect of rates of aeration and agitation on the volumetric coefficient of oxygen transfer in the production of bikaverin. International Review Of Chemical Engineering (IRECHE), 6(2), 100-107.
  • Chisti, Y. (2016). Airlift bioreactors: Principles, applications, and recent advances. Chemical Engineering and Processing: Process Intensification, 104, 1–21. https://doi.org/10.1016/j.cep.2016.03.007
  • Choi, S., Lee, S., Kim, J., & Park, Y. (2020). Regulation of bikaverin biosynthesis and oxidative metabolism in Fusarium fujikuroi under oxygen-limited fermentation. Journal of Biotechnology, 318, 45–53. https://doi.org/10.1016/j.jbiotec.2020.07.012
  • Cornforth, J. W., Ryback, G., Robinson, P. M., & Park, D. (1971). Isolation and characterization of a fungal vacuolation factor (bikaverin). Journal of the Chemical Society C: Organic, 2786. https://doi.org/10.1039/j39710002786
  • Doran, P. M. (2013). Bioprocess engineering principles. Academic Press. United Kingdom
  • Garza-Garza, C., Olguin-Maciel, E., Valdez-Ojeda, R., Huchin-Poot, E., Toledano-Thompson, T., Azcorra-May, K., Alzate-Gaviria, L., Dominguez-Maldonado, J., Lappe-Oliveras, P., & Tapia-Tussell, R. (2025). Bio-saccharification and fermentation process of a non-conventional starchy material with isolates of autochthonous strains. Revista Mexicana de Ingeniería Química, 24(2), 1-26. https://doi.org/10.24275/rmiq/bio25497
  • Giordano, W., & Domenech, C. E. (1999). Aeration affects acetate destination in Gibberella fujikuroi. FEMS Microbiology Letters, 180(1), 111–116. https://doi.org/10.1111/j.1574-6968.1999.tb08784.x
  • Hinojosa Ventura, G., Puebla Pérez, A. M., Gallegos Arreola, M. P., Chávez Parga, M. del C., Romero Estrada, A., & Delgado Saucedo, J. I. (2019). Cytotoxic and Antitumoral Effects of Bikaverin from Gibberella fujikuroi on L5178Y Lymphoma Murine Model. Journal of the Mexican Chemical Society, 63(4). https://doi.org/10.29356/jmcs.v63i4.729
  • Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. En Wiley eBooks. https://doi.org/10.1002/9780470278376
  • Limón, M. C., Rodríguez-Ortiz, R., & Avalos, J. (2023). Oxygen availability modulates bikaverin production and fungal differentiation in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 107(5), 1911–1924. https://doi.org/10.1007/s00253-023-12215-2
  • Limón, M. C., Rodríguez-Ortiz, R., & Avalos, J. (2010). Bikaverin production and applications. Applied Microbiology and Biotechnology, 87(1), 21–29. https://doi.org/10.1007/s00253-010-2551-1
  • Lu, H., Guo, S., Yang, Y., Zhao, Z., Xie, Q., Wu, Q., Sun, C., Luo, H., An, B., & Wang, Q. (2025). Bikaverin as a molecular weapon: enhancing Fusarium oxysporum pathogenicity in bananas via rhizosphere microbiome manipulation. Microbiome, 13(1). https://doi.org/10.1186/s40168-025-02109-7
  • Machado, S., Feitosa, V., Pillaca-Pullo, O., Lario, L., Sette, L., Pessoa, A., & Alves, H. (2022). Effects of oxygen transference on protease production by Rhodotorula mucilaginosa CBMAI 1528 in a stirred tank bioreactor. Bioengineering, 9(11), 694. https://doi.org/10.3390/bioengineering9110694  
  • Martínez-Moreno, F., Jofre y Garfias, A. E., Hernández-Orihuela, A. L., & Martínez-Antonio, A. (2021). Avocado seed hydrolysate as an alternative growth medium for fungi. Revista Mexicana de Ingeniería Química, 20(2), 569–580. https://doi.org/10.24275/rmiq/Bio1951
  • Medentsev, A. G., Arinbasarova, A. Yu., & Akimenko, V. K. (2005). Biosynthesis of Naphthoquinone Pigments by Fungi of the Genus Fusarium. Applied Biochemistry and Microbiology, 41(5), 503–507. https://doi.org/10.1007/s10438-005-0091-8
  • Medentsev, A., & Akimenko, V. (1998). Naphthoquinone metabolites of the fungi. Phytochemistry, 47(6), 935-959. https://doi.org/10.1016/s0031-9422(98)80053-8
  • Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
  • Nirmaladevi, D., Venkataramana, M., Chandranayaka, S., Ramesha, A., Jameel, N. M., & Srinivas, C. (2014). Neuroprotective Effects of Bikaverin on H2O2-Induced Oxidative Stress Mediated Neuronal Damage in SH-SY5Y Cell Line. Cellular and Molecular Neurobiology, 34(7), 973–985. https://doi.org/10.1007/s10571-014-0073-6
  • Santiago da Silva, W. (2013). ¨Produção de pigmentos fúngicos e seu uso no tingimento de tecidos Tesis Maestre Dissertação apresentada ao programa de Pós Graduação em Tecnologias para o Desenvolvimento Sustentável. Universidade Federal de São João Del-Rei (UFSJ). Brasil.
  • Santos, M. C. D., De Lima Mendonça, M., & Bicas, J. L. (2020). Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources And Bioprocessing, 7(1). https://doi.org/10.1186/s40643-020-0301-5
  • Solórzano, L. (1969). Determination of Ammonia in natural waters by the Phenolhypochlorite Method 1 1 This research was fully supported by U.S. Atomic Energy Commission Contract No. ATS (11‐1) GEN 10, P.A. 20. Limnology and Oceanography, 14(5), 799–801. https://doi.org/10.4319/lo.1969.14.5.0799
  • Soumya, K., Narasimha Murthy, K., Sreelatha, G. L., & Tirumale, S. (2018). Characterization of a red pigment from Fusarium chlamydosporum exhibiting selective cytotoxicity against human breast cancer MCF-7 cell lines. Journal of Applied Microbiology, 125(1), 148–158. https://doi.org/10.1111/jam.13756
  • Spraker, J. E., Wiemann, P., Baccile, J. A., Venkatesh, N., Schumacher, J., Schroeder, F. C., Sanchez, L. M., & Keller, N. P. (2018). Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi. mBio, 9(3). https://doi.org/10.1128/mbio.00820-18
  • Tudzynski, B. (2014). Nitrogen regulation of fungal secondary metabolism in fungi. Frontiers In Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00656
  • Valle, P., Salazar, Y., Soto-Cruz, N., Páez-Lerma, J., Coria, L., Núñez-Guerrero, M., Rodríguez-Herrera, R., & Herrera, L. (2024). Modelling and analysis on the ethanol production by the Torulaspora delbrueckii yeast. Revista Mexicana de Ingeniería Química, 23(3), 1-17. https://doi.org/10.24275/rmiq/sim24312
  • Wiemann, P., Willmann, A., Straeten, M., Kleigrewe, K., Beyer, M., Humpf, H., & Tudzynski, B. (2009). Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Molecular Microbiology, 72(4), 931–946. https://doi.org/10.1111/j.1365-2958.2009.06695.x
  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van ’t Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56(6), 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990