Vol. 24, No. 3 (2025), IA25621 https://doi.org/10.24275/rmiq/IA25621


Effect of operational parameters in electrocoagulation for the removal of phosphorus, nitrates, and ammoniacal nitrogen from water


 

Authors

G.A. Tamayo-Roman, S. Enciso-Sáenz, J.H. Castañon-González, J.J. Villalobos-Maldonado


Abstract

Electrocoagulation represents an efficient and low-cost alternative for the removal of contaminants present in water bodies affected by domestic discharges and agricultural activities. In this study, the application of an electrocoagulation reactor equipped with aluminum anodes and graphite cathodes was evaluated for the removal of phosphorus, nitrates, and ammoniacal nitrogen in a synthetic water matrix similar to that of the Garrido Canabal River, Bochil, Chiapas, Mexico. The effects of electrode distance, applied voltage, operating time, and initial pH were analyzed. The best results were obtained with a 1 cm electrode distance, 9 V voltage, 20 minutes of operation time, and an initial pH of 7, achieving removal efficiencies of 81% for phosphorus, 82% for nitrates, and 76% for ammoniacal nitrogen. The results confirm the direct influence of operational variables on process efficiency, highlighting its potential as a sustainable alternative for water treatment in rural communities, while complying with the limits established in the NOM-127-SSA1-2021 regulation.


Keywords

Electrocoagulation, phosphorus, nitrates, ammoniacal nitrogen, water treatment.


References

  • Abdel-Aziz, M. H., El-Ashtoukhy, E. S. Z., Sh. Zoromba, M., Bassyouni, M., & Sedahmed, G. H. (2020). Removal of nitrates from water by electrocoagulation using a cell with horizontally oriented Al serpentine tube anode. Journal of Industrial and Engineering Chemistry, 82, 105–112. https://doi.org/10.1016/j.jiec.2019.10.001
  • Aguilar-Ascon, E. (2020). Removal of nitrogen and phosphorus from domestic wastewater by electrocoagulation: Application of multilevel factorial design. Journal of Ecological Engineering, 21(7), 124–133. https://doi.org/10.12911/22998993/125439
  • Ano, J., Henri Briton, B. G., Kouassi, K. E., & Adouby, K. (2020). Nitrate removal by electrocoagulation process using experimental design methodology: A techno-economic optimization. Journal of Environmental Chemical Engineering, 8(5). https://doi.org/10.1016/j.jece.2020.104292
  • Bashir, M. J., Lim, J. H., Abu Amr, S. S., Wong, L. P., & Sim, Y. L. (2019). Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. Journal of Cleaner Production, 208, 716–727. https://doi.org/10.1016/j.jclepro.2018.10.073
  • Bastida-Vázquez, J., Roa-Morales, G., Gómez-Espinosa, R. M., Balderas-Hernández, P., & Natividad-Rangel, R. (2024). Water treatment applying electrocoagulation and filtration processes with a functionalized membrane of a contaminated water body from San Cayetano de Morelos, Toluca. Revista Mexicana de Ingeniera Quimica, 23(1). https://doi.org/10.24275/rmiq/IA24164
  • Cadena-Álava, A. P., Cevallos-Cedeño, R. E., & García-Muentes, S. A. (2024). Evaluation of the coagulant property of carica papaya seeds in surface water treatment. Revista Mexicana de Ingeniera Quimica, 23(3). https://doi.org/10.24275/rmiq/IA24301
  • Chellam, S., & Sari, M. A. (2016). Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control. In Journal of Hazardous Materials (Vol. 304, pp. 490–501). Elsevier. https://doi.org/10.1016/j.jhazmat.2015.10.054
  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41. https://doi.org/10.1016/j.seppur.2003.10.006
  • Dehghani, M., Hoseini, M., Fathi Fath-Aabaadi, M.-K., Elhamiyan, Z., Shamsedini, N., Ghanbarian, M., Shahsavani, S., & Nourozian Baghani, A. (2016). Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution. Jundishapur Journal of Health Sciences, 8(1). https://doi.org/10.17795/jjhs-31095
  • Deveci, E. Ü., Akarsu, C., Gönen, Ç., & Özay, Y. (2019). Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochemistry, 84, 124–133. https://doi.org/10.1016/j.procbio.2019.06.016
  • Elabbas, S., Ouazzani, N., Mandi, L., Berrekhis, F., Perdicakis, M., Pontvianne, S., Pons, M. N., Lapicque, F., & Leclerc, J. P. (2016). Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials, 319, 69–77. https://doi.org/10.1016/j.jhazmat.2015.12.067
  • Elazzouzi, M., Haboubi, K., & Elyoubi, M. S. (2017). Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design, 117, 614–626. https://doi.org/10.1016/j.cherd.2016.11.011
  • Govindan, K., Noel, M., & Mohan, R. (2015). Removal of nitrate ion from water by electrochemical approaches. Journal of Water Process Engineering, 6, 58–63. https://doi.org/10.1016/j.jwpe.2015.02.008
  • Hameed, A., Nazir, S., Rehman, J. U., Ahmad, N., Hussain, A., Alam, I., Nazir, A., & Tahir, M. B. (2021). Assessment of health hazards related to contaminations of fluorides, nitrates, and nitrites in drinking water of Vehari, Punjab, Pakistan. Human and Ecological Risk Assessment, 27(6), 1509–1522. https://doi.org/10.1080/10807039.2020.1858021
  • Isiuku, B. O., & Enyoh, C. E. (2020). Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environmental Advances, 2. https://doi.org/10.1016/j.envadv.2020.100018
  • Ismail, M. D. E., Oiza, J. H., Pelumi, K. D., & Agnes, T. I. (2024). Purification of Heavy Metals Contaminated Groundwater by Electro-Coagulation Process Using Graphite Electrodes. Pollution, 10(1), 32–44. https://doi.org/10.22059/POLL.2023.360784.1949
  • Kosmulski, M., Gustafsson, J., & Rosenholm, J. B. (1999). Correlation between the Zeta Potential and Rheological Properties of Anatase Dispersions. http://www.idealibrary.com
  • NMX-AA-026-SCFI-2010. Análisis de agua. Determinación de amoníaco en aguas naturales, potables, residuales y residuales tratadas.
  • NMX-AA-029-SCFI-2001. Análisis de agua. Determinación de fósforo total en aguas naturales, potables, residuales y residuales tratadas.
  • NMX-AA-079-SCFI-2001. Análisis de agua. Determinación de nitratos en aguas naturales, potables, residuales y residuales tratadas.
  • NMX-AA-099-SCFI-2021. Análisis de agua. Determinación de nitritos en aguas naturales, potables, residuales y residuales tratadas.
  • NOM-127-SSA1-2021. Agua para uso y consumo humano. Límites permisibles de la calidad del agua y tratamientos a que debe someterse el agua para su potabilización. https://www.dof.gob.mx/nota_detalle.php?codigo=5629525&fecha=22/03/2021
  • NOM-230-SSA1-2002. Salud ambiental. Agua para uso y consumo humano. Procedimientos sanitarios para el muestreo. https://www.dof.gob.mx/normasOficiales/230SSA12002.pdf
  • Medrano-Hurtado, Z. Y., Medina-Aguirre, J. C., Marcelo-Medrano, H., Castillón-Barraza, A., Zamora-Alarcón, R., Casillas-Lamadrid, M. E., Jumilla-Corral, A. A., & Mayorga-Ortiz, P. (2022). Domestic wastewater treatment by electrocoagulation system using photovoltaic solar energy. Revista Mexicana de Ingeniera Quimica, 21(2). https://doi.org/10.24275/rmiq/IA2809
  • Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65–73. https://doi.org/10.1016/j.ecoleng.2018.08.025
  • Reilly, M., Cooley, A. P., Tito, D., Tassou, S. A., & Theodorou, M. K. (2019). Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia, 161, 343–351. https://doi.org/10.1016/j.egypro.2019.02.106
  • Rodziewicz, J., Mielcarek, A., Janczukowicz, W., & Bryszewski, K. (2020). Electric power consumption and current efficiency of electrochemical and electrobiological rotating disk contactors removing nutrients fromwastewater generated in soil-less plant cultivation systems. Water (Switzerland), 12(1). https://doi.org/10.3390/w12010213
  • Sahu, O., Mazumdar, B., & Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. In Environmental Science and Pollution Research (Vol. 21, Issue 4, pp. 2397–2413). https://doi.org/10.1007/s11356-013-2208-6
  • Vepsäläinen, M., & Sillanpää, M. (2020). Electrocoagulation in the treatment of industrial waters and wastewaters. In Advanced Water Treatment: Electrochemical Methods (pp. 1–78). Elsevier Inc. https://doi.org/10.1016/B978-0-12-819227-6.00001-2
  • Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., Rigoutsos, I., & Nelson, P. T. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28(5), 1213–1223. https://doi.org/10.1523/JNEUROSCI.5065-07.2008
  • Yazici Karabulut, B., Atasoy, A. D., Can, O. T., & Yesilnacar, M. I. (2021). Electrocoagulation for nitrate removal in groundwater of intensive agricultural region: a case study of Harran plain, Turkey. Environmental Earth Sciences, 80(5). https://doi.org/10.1007/s12665-021-09488-8
  • Yehya, T., Chafi, M., Balla, W., Vial, C., Essadki, A., & Gourich, B. (2014). Experimental analysis and modeling of denitrification using electrocoagulation process. Separation and Purification Technology, 132, 644–654. https://doi.org/10.1016/j.seppur.2014.05.022
  • Zhu, M., Fan, J., Zhang, M., Li, Z., Yang, J., Liu, X., & Wang, X. (2021). Current intensities altered the performance and microbial community structure of a bio-electrochemical system. Chemosphere, 265. https://doi.org/10.1016/j.chemosphere.2020.129069