- Abdel-Shafy, H. I., and Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
- Aguirre Forero, S. E., Piraneque Gambasica, N. V., and Mercado Fernández, T. (2022). Suelo y cambio climático: Incluye estudio de casos. Editorial Unimagdalena, Colombia.
- Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation 29(3), 331-349. https://doi.org/10.1017/S0376892902000231
- Billah, M. M., Bhuiyan, M. K. A., Amran, M. I. U. A., Cabral, A. C., and Garcia, M. R. D. (2022). Polycyclic aromatic hydrocarbons (PAHs) pollution in mangrove ecosystems: global synthesis and future research directions. Reviews in Environmental Science and Bio/Technology 21(3), 747-770. https://doi.org/10.1007/s11157-022-09625-0
- Bruland, G. L., and Richardson, C. J. (2005). Hydrologic, edaphic, and vegetative responses to fire and hydrologic manipulation in the Everglades. Ecological Applications 15(4), 1379-1395. https://doi.org/10.1890/04-1206
- Chen, Y., Li, X., Zhao, L., and Liu, C. (2019). Distribution and risk assessment of petroleum hydrocarbons in sediments of a coastal bay in China. Environmental Science and Pollution Research 26(22), 22957-22967. https://doi.org/10.1007/s11356-019-05969-2
- Cisneros-de la Cueva, S., Martínez-Prado, M. A., Rojas-Contreras, J. A., & López-Miranda, J. (2024). Effect of surfactants on the removal of total petroleum hydrocarbons and microbial communities during bioremediation of a contaminated mining soil. Revista Mexicana de Ingeniería Química 23(2), 1-17. https://doi.org/10.24275/rmiq/Bio2417
- Davis Jr, R. A. (2017). Sediments of the Gulf of Mexico. In: Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 1: Water Quality, Sediments, Sediment Contaminants, Oil and Gas Seeps, Coastal Habitats, Offshore Plankton and Benthos, and Shellfish, (Ward, C. https://doi.org/10.1007/978-1-4939-3447-8_3, eds), Pp. 165-215 Springer, New York, NY.
- Dhara, A., and Dutta, R. (2025). A review on sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in wetland ecosystem: Focusing on plant-biomonitoring and phytoremediation. Environmental Science and Pollution Research 32, 1-23. https://doi.org/10.1007/s11356-025-36240-7
- Dönmez, A. E. (2023). Sucul Ortamların İzlenmesinde Biyobelirteç Olarak Histopatoloji. Journal of Anatolian Environmental and Animal Sciences 8(2), 183-190. https://doi.org/10.35229/jaes.1245431
- Egardt, J., Larsen, M. M., Lassen, P., and Dahllöf, I. (2018). Release of PAHs and heavy metals in coastal environments linked to leisure boats. Marine pollution bulletin 127, 664-671.https://doi.org/10.1016/j.chemosphere.2024.143910
- García, M. E., Pérez, R. A., and Torres, J. L. (2019). Impacto de hidrocarburos en propiedades fisicoquímicas de suelos agrícolas: una revisión. Revista de Ciencias Ambientales, 11(2), 143-156 https://doi.org/10.22201/icat.16656423e.2019.2.173
- García-Rodríguez, M. J., and Delgado-Mendoza, J. A. (2020). Changes in mangrove vegetation caused by long-term exposure to petroleum hydrocarbons. Marine Pollution Bulletin 150, 110748. https://doi.org/10.1016/j.marpolbul.2019.110748
- Godoy-Lozano, E. E., Escobar-Zepeda, A., Raggi, L., Merino, E., Gutierrez-Rios, R. M., Juarez, K., and Pardo-López, L. (2018). Bacterial diversity and the geochemical landscape in the southwestern Gulf of Mexico. Frontiers in microbiology 9, 1-15. https://doi.org/10.3389/fmicb.2018.02528
- Houbron, E., Cruz-Carmona, E., Ponciano-Rosas, A., Rustrián-Portilla, E., and Canul-Chan, M. (2021). Motor oil wastewater treatment in a packed bed bioreactor using immobilized native microbial consortium. Revista Mexicana de Ingeniería Química 20(2), 761-773. https://doi.org/10.24275/rmiq/IA2271
- Iwegbue, C. M., Obi, G., Aganbi, E., Ogala, J. E., Omo-Irabor, O. O., and Martincigh, B. S. (2016). Concentrations and health risk assessment of polycyclic aromatic hydrocarbons in soils of an urban environment in the Niger Delta, Nigeria. Toxicology and Environmental Health Sciences 8(3), 221-233. https://doi.org/10.1007/s13530-016-0279-8
- Kakde, P., and Sharma, J. (2024). Microbial Bioremediation of Petroleum Contaminated Soil: Structural Complexity, Degradation Dynamics and Advanced Remediation Techniques. Journal of Pure & Applied Microbiology 18(4), 22-44. https://doi.org/10.22207/JPAM.18.4.28
- Kim, K.-H., Jahan, S. A., Kabir, E., and Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International 60, 71-80. https://doi.org/10.1016/j.envint.2013.07.019
- Li, Y., Li, W., Ji, L., Song, F., Li, T., Fu, X., and Wang, J. (2022). Effects of salinity on the biodegradation of polycyclic aromatic hydrocarbons in oilfield soils emphasizing degradation genes and soil enzymes. Frontiers in microbiology 12, 1-12. https://doi.org/10.3389/fmicb.2021.824319
- Ma, J., Zhou, T., Xu, C., Shen, D., Xu, S., and Lin, C. (2020). Spatial and temporal variation in microbial diversity and community structure in a contaminated mangrove wetland. Applied Sciences 10(17), 1-15. https://doi.org/10.3390/app10175850
- Maestre, F. T., Escudero, A., and Bonet, A. (Eds.). (2008). Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Editorial Dykinson, España.
- Marín-García, D. C., Adams, R. H., and Hernández-Barajas, R. (2016). Effect of crude petroleum on water repellency in a clayey alluvial soil. International journal of environmental science and technology 13(1), 55-64. https://doi.org/10.1007/s13762-015-0838-6
- Méndez-Moreno, J. D. C., Garza-Rodríguez, I. M., Torres-Sánchez, S. A., Jiménez-Pérez, N. D. C., Sánchez-Lombardo, I., López-Martínez, S., and Morales-Bautista, C. M. (2021). Changes in restored soils subject to weathering and their implication in Mexican environmental regulations. Terra Latinoamericana 39. 1-21. https://doi.org/10.28940/terra.v39i0.798
- Morales-Bautista, C. M., Méndez-Olán, C., López-Martínez, S., and Ojeda-Morales, M. E. (2020). Design of experiments to optimize soxhlet-HTP method to establish environmental diagnostics of polluted soil: Optimization of the soxhlet-HTP method by DOE. In Design of experiments for chemical, pharmaceutical, food, and industrial applications (E.G. Carrillo-Cedillo. J.A. Rodríguez-Avila, K.A. Arredondo-Soto and, J.M. Cornejo-Bravo. https://doi.org/10.4018/978-1-7998-1518-1 , eds.). P.p. 33-52. IGI Global Scientific Publishing.
- Nguyen, T. N. T., Park, M. K., Son, J. M., and Choi, S. D. (2021). Spatial distribution and temporal variation of polycyclic aromatic hydrocarbons in runoff and surface water. Science of the Total Environment 793, 148339. https://doi.org/10.1016/j.scitotenv.2021.148339
- Pil-Gon, K. I. M., Tarafdar, A., and Jung-Hwan, K. W. O. N. (2023). Effect of soil pH on the sorption capacity of soil organic matter for polycyclic aromatic hydrocarbons in unsaturated soils. Pedosphere 33(2), 365-371. https://doi.org/10.1016/j.pedsph.2022.06.049
- Piñeiro, P. P., Massone, C. G., and Carreira, R. S. (2017). Distribution, sources and toxicity potential of hydrocarbons in harbor sediments: A regional assessment in SE Brazil. Marine pollution bulletin 120(1-2), 6-17. https://doi.org/10.1016/j.marpolbul.2017.04.049
- Reddy, K. R., and Delaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. CRC Press, Taylor & Francis, UK. https://doi.org/10.1201/9781420017626
- Rivera-Arriaga, E., I. Azuz-Adeath, O. D. Cervantes Rosas, A. Espinoza-Tenorio, R. Silva Casarín, A. Ortega-Rubio, A. V. Botello y B. E. Vega-Serratos (2020). Gobernanza y Manejo de las Costas y Mares ante la Incertidumbre. Una Guía para Tomadores de Decisiones. Editorial Ricomar, Universidad Autónoma de Campeche, México
- Saunders, D., Carrillo, J. C., Gundlach, E. R., Iroakasi, O., Visigah, K., Zabbey, N., and Bonte, M. (2022). Analysis of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and edible aquatic species in an oil-contaminated mangrove ecosystem in Bodo, Niger Delta, Nigeria: Bioaccumulation and human health risk assessment. Science of the Total Environment 832, 154802. https://doi.org/10.1016/j.scitotenv.2022.154802
- Sparks, D. L., Singh, B., and Siebecker, M.G. (2003). Environmental Soil Chemistry. Academic Press, United Kingdom. https://doi.org/10.1016/B978-012656446-4/50000-9
- SEMARNAT (2002). Secretaría de Medio Ambiente y Recursos Naturales Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. Diario Oficial de la Federación, 31 de diciembre de 2002. Available at: https://www.dof.gob.mx/nota_detalle.php?codigo=698211&fecha=31/12/2002 Accessed: August 2, 2022.
- SEMARNAT. (2013). Secretaría del Medio de Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-138-SEMARNAT/SSA1-2012 que establece los límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. Recuperado de: www.profepa.gob.mx/innovaportal/file/6646/1/nom-138-semarnat.ssa1-2012.pdf Accessed: August 5, 2022.
- Seo, S. H., Kwon, H. O., Park, M. K., Lee, I. S., and Choi, S. D. (2020). Contamination characteristics of polycyclic aromatic hydrocarbons in river and coastal sediments collected from the multi-industrial city of Ulsan, South Korea. Marine Pollution Bulletin 160, 111666. https://doi.org/10.1016/j.marpolbul.2020.111666
- Terence, R. C., and Masni, M. A. (2021). Vertical profile of polycyclic aromatic hydrocarbons in the core sediment found in Langkawi, Kedah. Journal of Environmental Biology 42, 849-856. http://doi.org/10.22438/jeb/42/3(SI)/JEB-17
- Velázquez-Salazar S., Rodríguez-Zúñiga M.T., Alcántara-Maya J.A., Villeda-Chávez E., Valderrama-Landeros L., Troche-Souza C., Vázquez-Balderas B., Pérez-Espinosa I., Cruz-López M. I., Ressl R., De la Borbolla D. V. G., Paz O., Aguilar-Sierra V., Hruby F. y Muñoa-Coutiño J. H. (2021). Manglares de México. Actualización y análisis de los datos 2020. Editorial Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.
- Velázquez-Vázquez, V. W., Gómez, S. A., Gutiérrez-Rojas, M., Díaz-Ramírez, I., and Volke-Sepúlveda, T. (2022). Estimation of hydrocarbon sequestration in soils: influence of the chemical characteristics of humic substances. Revista Mexicana de Ingeniería Química 21(1), 1-16. https://doi.org/10.24275/rmiq/IA2660
- Naidoo, G., and Naidoo, K. (2021). Salinity exacerbates oil contamination effects in mangroves. Environmental Science and Pollution Research 28(48), 68398-68406. https://doi.org/10.1007/s11356-021-15450-9
- Wang, Z., Meng, Q., Sun, K., and Wen, Z. (2024). Spatiotemporal distribution, bioaccumulation, and ecological and human health risks of polycyclic aromatic hydrocarbons in surface water: a comprehensive review. Sustainability 16(23), 1-32. https://doi.org/10.3390/su162310346
- Yu, Z., Lin, Q., Gu, Y., Du, F., Wang, X., Shi, F., and Yu, Y. (2019). Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in wild marine fish from the coastal waters of the northern South China Sea: risk assessment for human health. Ecotoxicology and environmental safety 180, 742-748. https://doi.org/10.1016/j.ecoenv.2019.05.065
- Zheng, W., Wang, Y., and Zhang, M. (2016). Influence of salinity on the sorption and mobility of petroleum hydrocarbons in estuarine soils. Chemosphere, 144, 1635–1642. https://doi.org/10.1016/j.chemosphere.2015.10.071
|