Vol. 24, No. 3 (2025), IA25694 https://doi.org/10.24275/rmiq/IA25694


Chemical, physical, and energetic characterization of biochar produced via sugarcane bagasse pyrolysis


 

Authors

O. Sánchez-Castillo, M.G. Vizcarra-Mendoza, C. Martínez-Vera, S.A. Gómez-Torres, E. Rojas-García


Abstract

The objective of this work is to study the production of biochar from the pyrolysis of sugar cane bagasse with the purpose of determining the effect of pyrolysis temperature on the biochar properties. The results could be relevant for choosing the operation conditions according to the purpose for which the biochar is produced. For this study, a pyrolizer was designed and constructed for carrying out the experiments. The parameters analyzed were the inert gas flow (N2), the effect of the bagasse particle size, and the temperature. Biochar was produced at four temperatures: 300, 400, 500, and 600°C. The morphological and physical-chemical characteristics of the biochar produced were determined by several analytical techniques: elemental chemical analysis, N2 adsorption, scanning electronic microscopy, X-ray diffraction, and infrared and Raman spectroscopies. The effect of the operation temperature on the mass, energetic, and fixed carbon yields, as well as on the lower heating value of the biochar obtained is analyzed. In addition, the present study reports the relationship between the order degree of the carbon structures in biochar and the pyrolysis temperature.


Keywords

Sugarcane bagasse; pyrolysis; biochar; energy yield; low heating value.


References

  • Ahumada C.D., Hinojosa- Palafox J.F., Maytorena V.M., Pérez-Rábago, C. (2022). Computational study of biomass fast pyrolysis in a fluidized bed reactor. Revista Mexicana de Ingeniería Química Vol. 21, No. 2. ISSN:1665-2738. issn-e: 2395-8472
  • https://doi.org/10.24275/rmiq/Cat2744
  • Antonangelo, J.A., Zhang, H., Sun, X. Kumar A., Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar 1, 325–336 (2019). https://doi.org/10.1007/s42773-019-00028-z
  • Honorato-Salazar, J.A., Sadhukhan, J. (2020). Annual biomass variation of agriculture crops and forestry residues, and seasonality of crop residues for energy production in Mexico. Food and Biomass Processing 119, 1-19. https://doi.org/10.1016/j.fbp.2019.10.005.
  • Iwuozor, K.O., Emenike, E.Ch., Ighalo, J.O., Omoaruke, F.O., Omuku, P.E., Adeniyi, A. G. (2022). Cleaner Materials 6 100162. https://doi.org/10.1016/j.clema.2022.100162
  • Karp, S.G., Woiciechowski, A.L., Soccol V.T., Soccol R. (2013). Pretreatment strategies for delignification of sugarcane bagasse: A review. Brazilian Archives of Biology and Technology 56, 679-689. https://doi.org/10.1590/S1516-89132013000400019
  • Kumar, M., Upadhyay, S.N., Mishra, P.K. (2022). Pyrolysis of sugarcane (Saccharum officinarum L.) Leaves and Characterization Products, ACS Omega, 7, 28052-28064. https://doi.org/10.1021/acsomega.2c02076
  • Marín Apolo, Y.C., Vega Iñiguez, M.E., Ochoa-Correa D. (2025). Aprovechamiento de residuos agrícolas para producción de electricidad en Latinoamérica: Revisión literaria de casos exitosos en México, Colombia y Brasil. InGenio Journal 8(1) 46-68. https://doi.org/10.18779/ingenio.v8il.901
  • Parihar, M.F., Kamil, M., Goyal, H.B., Gupta, A.K., Bhatnagar, A.K. (2007). An experimental study on pyrolysis of biomass. Trans I Chem. E., Part B. Process Safety and Environmental Protection 85, B5, 458-465. https://doi.org/10.1205/psep07035
  • Rambhatla, N., Panicker, T., Mishra, R.K., Manjeshwar, S.K., Sharma, A. (2025). Biomass pyrolysis for biochar production: Study of kinetics parameters and effect of temperature on biochar yield its physicochemical properties. Results in engineering 25, 103679 1-12. https://doi.org/10.1016/j.rineng.2024.103679
  • Romero-Bonilla, H. I., Jaramillo-Guanolique, A., Zambrano, C., Rios-Hidalgo, M., Solano-Maza, L., Choez-Tobo, C. (2025). Cocoa shell biochars for sustainable biodiesel production in Ecuador. Revista Mexicana de Ingeniería Química 24, No. 1, IE24221. https://doi.org/10.24275/rmiq/IE24221 ISSN:1665-2738, issn-e: 2395-8472
  • Sánchez Castillo, O., Vizcarra-Mendoza, M.G., Martínez Vera, C., Gómez Torres, S.A., Rojas García, E. (2025). Producción de biochar a partir de la pirólisis de bagazo de caña de azúcar. Avances en IQ 4(1), AMB 343-AMB348. ISSN: 2683-2925.
  • Tillman, D.A. (1978). Fuels and Combustion Handbook. Mc Graw-Hill, NY, p.65.
  • Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., Wolf Maciel, M.R. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew. Sustain. Energy Rev. 149, 111394. https://doi.org/10.1016/j.rser.2021.111394
  • van Krevelen, D. W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269-284.
  • Weber, K., Quicker, P. (2018). Properties of biochar. Fuel 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054
  • Xu, J., Liu, J., Ling, P., Zhang, X., Xu, K., He, L., Wang, Y., Su, S., Hu, S., Xiang, J. (2020). Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Results in Energy 202(1-10) 117644. https://doi.org/10.1016/j.energy.2020.117644
  • Zafranet (2025). Available at: https://www.zafranet.com/noticias/zafra-2024-25-produccion-de-azucar-acumulada-supera-los-4-6-millones-de-toneladas/ Accessed: June 24, 2025.