Vol. 24, No. 3 (2025), IE25590 https://doi.org/10.24275/rmiq/IE25590


Using a composite coating (Cu/(TiO2) + (SiO2)/ Al2O2)to increase the efficiency of photovoltaic panels


 

Authors

R.khatir, K.kessairi, N.sellami, A.fidjah


Abstract

This research analyzes the effect of applying a heat-reflective coating to a 270W polycrystalline panel. Solar panels suffer reduced efficiency due to high temperatures, negatively impacting their performance, especially in high solar irradiance conditions. This is a fundamental step toward promoting solar energy as an economical source. The research aims to evaluate the effect of a heat-reflective coating technique (using a multilayer system (copper, a titanium dioxide/silicon dioxide middle layer, and an aluminum oxide protective layer), on improving panel efficiency by increasing energy production. The researchers followed an exploratory, experimental approach, comparing the performance of a standard panel to a coated panel by estimating irradiance, temperature, and power generation under varying climatic conditions. The results showed increased photovoltaic efficiency, approaching the panel's maximum power with an increase of 8% to 9%. The study highlights the practical potential of this technology in improving the efficiency of solar systems and expanding their application in environments with high temperatures and radiation, supporting the long-term development of clean energy solutions. It is an effective method for improving panel efficiency, paving the way for advanced solar energy technologies.


Keywords

Solar energy, Heat-reflective coating , Polycrystalline panel, Photovoltaic efficiency , Multilayer design.


References

  • Abdel-Aziz, M. M., Khelifa, A., Attia, M. E. H., & Bady, M. (2025). A numerical investigation on improving the thermal efficiency of PV panels through integration with solar water collectors. Solar Energy, 287, 113259. https://doi.org/10.1016/j.solener.2024.113259
  • Adak, D., Bhattacharyya, R., & Barshilia, H. C. (2022). A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renewable and Sustainable Energy Reviews, 159, 112145. https://doi.org/10.1016/j.rser.2022.112145
  • Adak, D., Bhattacharyya, R., & Barshilia, H. C. (2022). A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices. Renewable and Sustainable Energy Reviews, 159, 112145. https://doi.org/10.1016/j.rser.2022.112145
  • Agyekum, E. B., PraveenKumar, S., Alwan, N. T., Velkin, V. I., & Shcheklein, S. E. (2021). Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07920
  • Akhlaghi, M. M., Alavijeh, A. S., Hosseinalizadeh, R., Nasri, S., & Ghazinoory, S. (2025). Systematic failures in the development of photovoltaic systems: The case study of Iran's solar energy. Energy Strategy Reviews, 57, 101637. https://doi.org/10.1016/j.esr.2025.101637
  • Alhodaib, A., Yahya, Z., Khan, O., Equbal, A., Equbal, M. S., Parvez, M., ... & Idrisi, M. J. (2024). Sustainable coatings for green solar photovoltaic cells: performance and environmental impact of recyclable biomass digestate polymers. Scientific Reports, 14(1), 11221. https://doi.org/10.1038/s41598-024-61432-5
  • Alshammari, A. A., Salilih, E. M., Almatrafi, E., & Rady, M. (2024). Polymeric coatings for passive radiative cooling of PV modules in hot and humid weather: Design, optimization, and performance evaluation. Case Studies in Thermal Engineering, 57, 104341. https://doi.org/10.1016/j.csite.2024.104341
  • Alshammari, A., Almatrafi, E., & Rady, M. (2024). Radiative coatings for solar cell cooling: Materials, and applications. Solar Energy, 273, 112545. https://doi.org/10.1016/j.solener.2024.112545
  • Atkinson, C., Sansom, C. L., Almond, H. J., & Shaw, C. P. (2015). Coatings for concentrating solar systems–A review. Renewable and Sustainable Energy Reviews, 45, 113-122. https://doi.org/10.1016/j.rser.2015.01.050
  • Balal, A., Sheikhzadeh, G. A., & Fattahi, A. (2024). Experimental evaluation of the hybrid-bifacial cooling of a PV panel in arid weather using channel heat exchanger and impingement flow nozzles. Journal of Heat and Mass Transfer Research, 11(2), 195-210. https://doi.org/10.48369/JHMR.2024.2102
  • Belançon, M. P., Sandrini, M., Zanuto, V. S., & Muniz, R. F. (2023). Glassy materials for Silicon-based solar panels: Present and future. Journal of Non-Crystalline Solids, 619, 122548. https://doi.org/10.1016/j.jnoncrysol.2023.122548
  • Chikate, B. V., Sadawarte, Y., & Sewagram, B. D. C. O. E. (2015). The factors affecting the performance of solar cell. International Journal of Computer Applications, 1(1), 0975-8887. https://doi.org/10.5120/ijca2015905713
  • Dambhare, M. V., Butey, B., & Moharil, S. V. (2021, May). Solar photovoltaic technology: A review of different types of solar cells and its future trends. In Journal of Physics: Conference Series (Vol. 1913, No. 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1742-6596/1913/1/012053
  • Darjay, S., & Agyekum, E. B. (2025). Assessment of solar energy generation potential in Western Bhutan–A case study of 12 kWp grid-tied rooftop solar photovoltaic system. International Journal of Thermofluids, 26, 101142. https://doi.org/10.1016/j.ijft.2024.101142
  • Deshmukh, M. K. G., Sameeroddin, M., Abdul, D., & Sattar, M. A. (2023). Renewable energy in the 21st century: A review. Materials Today: Proceedings, 80, 1756-1759. https://doi.org/10.1016/j.matpr.2023.02.161
  • Dias, P. R., Schmidt, L., Chang, N. L., Lunardi, M. M., Deng, R., Trigger, B., ... & Veit, H. (2022). High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment. Renewable and Sustainable Energy Reviews, 169, 112900. https://doi.org/10.1016/j.rser.2022.112900
  • Dillingh, B., Kaldal, G. S., Thorbjornsson, I., Wollenweber, J., & Vercauteren, F. (2021). Tensile testing of casing material at elevated temperatures up to 550° C. In Proceedings of the World Geothermal Congress. https://doi.org/10.5281/zenodo.5115497
  • El Hammoumi, A., Chtita, S., Motahhir, S., & El Ghzizal, A. (2022). Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.058
  • El-Khozondar, H. J., El-Khozondar, R. J., Al Afif, R., & Pfeifer, C. (2021). Modified solar cells with antireflection coatings. International Journal of Thermofluids, 11, 100103. https://doi.org/10.1016/j.ijft.2021.100103
  • Elnozahy, A., Abd-Elbary, H., & Abo-Elyousr, F. K. (2024). Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings. Energy and Built Environment, 5(3), 393-403. https://doi.org/10.1016/j.enbenv.2023.10.003
  • Fang, H., Zhou, L., Xu, L., Dang, S., De Wolf, S., & Gan, Q. (2024). Radiative cooling for vertical solar panels. Iscience, 27(2). https://doi.org/10.1016/j.isci.2024.109029
  • Gueymard, C. A., Myers, D., & Emery, K. (2002). Proposed reference irradiance spectra for solar energy systems testing. Solar energy, 73(6), 443-467. https://doi.org/10.1016/S0038-092X(02)00074-5
  • Hasan, K., Yousuf, S. B., Tushar, M. S. H. K., Das, B. K., Das, P., & Islam, M. S. (2022). Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering, 10(2), 656-675. https://doi.org/10.1002/ese3.1043
  • Immanuel, R. J., & Panigrahi, S. K. (2015). Influence of cryorolling on microstructure and mechanical properties of a cast hypoeutectic Al–Si alloy. Materials Science and Engineering: A, 640, 424-435. https://doi.org/10.1016/j.msea.2015.07.079
  • Jathar, L. D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M. E. M., ... & Rehan, M. (2023). Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution, 326, 121474. https://doi.org/10.1016/j.envpol.2023.121474
  • Ji, C., Liu, W., Bao, Y., Chen, X., Yang, G., Wei, B., ... & Wang, X. (2022, November). Recent applications of antireflection coatings in solar cells. In Photonics (Vol. 9, No. 12, p. 906). MDPI. https://doi.org/10.3390/photonics9120906
  • Kausar, A. (2018). Polymer coating technology for high performance applications: Fundamentals and advances. Journal of Macromolecular Science, Part A, 55(5), 440-448. https://doi.org/10.1080/10601325.2018.1470472
  • Khan, M. E., Aslam, J., & Verma, C. (Eds.). (2023). Nanocomposites-Advanced Materials for Energy and Environmental Aspects. Elsevier. https://doi.org/10.1016/B978-0-323-95177-7.00001-5
  • Kurpaska, S., Knaga, J., Latała, H., Sikora, J., & Tomczyk, W. (2018). Efficiency of solar radiation conversion in photovoltaic panels. In BIO web of conferences (Vol. 10, p. 02014). EDP Sciences. https://doi.org/10.1051/bioconf/20181002014
  • Law, A. M., Jones, L. O., & Walls, J. M. (2023). The performance and durability of Anti-reflection coatings for solar module cover glass–a review. Solar Energy, 261, 85-95. https://doi.org/10.1016/j.solener.2023.05.023
  • Li, G., Su, Z., Canil, L., Hughes, D., Aldamasy, M. H., Dagar, J., ... & Abate, A. (2023). Highly efficient pin perovskite solar cells that endure temperature variations. Science, 379(6630), 399-403. https://doi.org/10.1126/science.ade9877
  • Libra, M., Petrík, T., Poulek, V., Tyukhov, I. I., & Kouřím, P. (2021). Changes in the efficiency of photovoltaic energy conversion in temperature range with extreme limits. IEEE Journal of Photovoltaics, 11(6), 1479-1484. https://doi.org/10.1109/JPHOTOV.2021.3110540
  • Maka, A. O., & Alabid, J. M. (2022). Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), 476-483. https://doi.org/10.1093/ce/zkac039  
  • Mara, J., Bodnár, A. E., Trif, L., & Telegdi, J. (2023). Development of Effective Infrared Reflective Coatings. Applied Sciences, 13(23), 12903. https://doi.org/10.3390/app132312903
  • Mavromatakis, F., Kavoussanaki, E., Vignola, F., & Franghiadakis, Y. (2014). Measuring and estimating the temperature of photovoltaic modules. Solar Energy, 110, 656-666. https://doi.org/10.1016/j.solener.2014.10.020
  • McCandless, B. E., & Sites, J. R. (2011). Cadmium telluride solar cells. Handbook of photovoltaic science and engineering, 600-641. https://doi.org/10.1002/9780470974704.ch15   
  • Mohammad, A., & Mahjabeen, F. (2025). From silicon to sunlight: exploring the evolution of solar cell materials. Authorea Preprints. https://doi.org/10.22541/au.170845011.17624504/v1
  • Mostafa, E. M., & Hammam, R. E. (2024). Tailored solar collector coatings: Synthesis and characterization of CuFe2O4/PANI nanocomposites. Optical Materials, 156, 115879. https://doi.org/10.1016/j.optmat.2024.115879
  • Mozumder, M. S., Mourad, A. H. I., Pervez, H., & Surkatti, R. (2019). Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells, 189, 75-102. https://doi.org/10.1016/j.solmat.2018.12.020
  • Murtadha, T. K., dil Hussein, A. A., Alalwany, A. A., Alrwashdeh, S. S., & Al-Falahat, A. A. M. (2022). Improving the cooling performance of photovoltaic panels by using two passes circulation of titanium dioxide nanofluid. Case Studies in Thermal Engineering, 36, 102191. https://doi.org/10.1016/j.csite.2022.102191
  • Nazari, M. H., Zhang, Y., Mahmoodi, A., Xu, G., Yu, J., Wu, J., & Shi, X. (2022). Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Progress in Organic Coatings, 162, 106573. https://doi.org/10.1016/j.porgcoat.2021.106573
  • Nia, M., Chegaar, M., Benatallah, M. F., & Aillerie, M. (2013). Contribution to the quantification of solar radiation in Algeria. Energy Procedia, 36, 730-737. https://doi.org/10.1016/j.egypro.2013.07.085
  • Oni, A. M., Mohsin, A. S., Rahman, M. M., & Bhuian, M. B. H. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Reports, 11, 3345-3366. https://doi.org/10.1016/j.egyr.2024.03.042
  • Pervez, I., Shi, J., Ghazzai, H., & Massoud, Y. (2023, May). NeuralPV: a neural network algorithm for PV power forecasting. In 2023 IEEE international symposium on circuits and systems (ISCAS) (pp. 1-5). IEEE. https://doi.org/10.1109/ISCAS46773.2023.10181373
  • Pošković, E., Franchini, F., Ferraris, L., Fracchia, E., Bidulska, J., Carosio, F., ... & Actis Grande, M. (2021). Recent advances in multi-functional coatings for soft magnetic composites. Materials, 14(22), 6844. https://doi.org/10.3390/ma14226844
  • Sachenko, A., Kostylyov, V., Sokolovskyi, I., & Evstigneev, M. (2019). Effect of temperature on limit photoconversion efficiency in silicon solar cells. IEEE Journal of Photovoltaics, 10(1), 63-69. https://doi.org/10.1109/JPHOTOV.2019.2949807
  • Santhosh, N., & Prasad, B. (2016, March). Efficiency improvement of a solar PV-panel through spectral sharing by combination of different panels. In 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-4). IEEE. https://doi.org/10.1109/SCEECS.2016.7509316
  • Sarkın, A. S., Ekren, N., & Sağlam, Ş. (2020). A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Solar energy, 199, 63-73. https://doi.org/10.1016/j.solener.2020.03.085
  • Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P., & Das, N. (2020). Anti-reflective coating materials: A holistic review from PV perspective. Energies, 13(10), 2631. https://doi.org/10.3390/en13102631
  • Sharma, K. K., & Chandra, P. (2025). Selective response surface methodology for Anti Reflective Coated Nano-film filter thickness optimization in hybrid PVT system. Engineering Applications of Computational Fluid Mechanics, 19(1), 2443119. https://doi.org/10.1080/19942060.2024.2443119
  • Sun, C., Zou, Y., Qin, C., Zhang, B., & Wu, X. (2022). Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials, 5(4), 2675-2699. https://doi.org/10.1007/s42114-022-00567-3
  • Thongsuwan, W., Sroila, W., Kumpika, T., Kantarak, E., & Singjai, P. (2022). Antireflective, photocatalytic, and superhydrophilic coating prepared by facile sparking process for photovoltaic panels. Scientific Reports, 12(1), 1675. https://doi.org/10.1038/s41598-022-05704-y
  • Vaillon, R., Dupré, O., Cal, R. B., & Calaf, M. (2018). Pathways for mitigating thermal losses in solar photovoltaics. Scientific reports, 8(1), 13163. https://doi.org/10.1038/s41598-018-31597-x
  • Wette, J., Sutter, F., & Fernández-García, A. (2019). Evaluation of anti-soiling coatings for CSP reflectors under realistic outdoor conditions. Solar Energy, 191, 574-584. https://doi.org/10.1016/j.solener.2019.06.023
  • Winnicki, M. (2021). Advanced functional metal-ceramic and ceramic coatings deposited by low-pressure cold spraying: A review. Coatings, 11(9), 1044. https://doi.org/10.3390/coatings11091044
  • Xu, Y., Lin, Z., Wei, W., Hao, Y., Liu, S., Ouyang, J., & Chang, J. (2022). Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Letters, 14(1), 117. https://doi.org/10.1007/s40820-022-00856-y
  • Yu, H., Zhang, Y., Zhang, Q., Pang, W., Yan, H., & Li, G. (2020). Microstructure and thermal stability of Cu/TixSiyN/AlSiN solar selective absorbing coating. Materials, 13(4), 882. https://doi.org/10.3390/ma13040882