- Aguayo, S., Valenzuela, J. L., Parga, J. R., Lewis, R. G., & Cruz, M. (2007). Continuous Laboratory Gold Solvent Extraction from Cyanide Solutions using LIX 79 Reagent. Chemical Engineering & Technology: Industrial Chemestry-Plant Equipment-Process Engineering-Biotechnology, 30(11), 1532-1536. https://doi.org/https://doi.org/10.1002/ceat.200700202
- Ahmadipour, M., Rashchi, F., Ghafarizadeh, B., & Mostoufi, N. (2011). Synergistic Effect of D2EHPA and Cyanex 272 on Separation of Zinc and Manganese by Solvent Extraction. Separation Science and Technology - SEPAR SCI TECHNOL, 46. https://doi.org/https://doi.org/10.1080/01496395.2011.594848
- Bolin, N. J., & Sundkvist, J. E. (2008). Two-stage precipitation process of iron and arsenic from acid leaching solutions. Transactions of Nonferrous Metals Society of China, 18, 1513-1517. https://doi.org/https://doi.org/10.1016/S1003-6326(09)60034-0
- Borda, J., & Torres, R. (2021). Compartive study of selective zinc leaching from EAFD using carboxylic agents. Revista Mexicana de Ingeniería Química, 20, 389-398. https://doi.org/https://doi.org/10.24275/rmiq/IA2022
- Cayumil, R., Khanna, R., Rajarao, R., Mukherjee, P. S., & Sahajwalla, V. (2016). Concentration of precious metals during their recovery from electronic waste. Waste Management, 121-130. https://doi.org/https://doi.org/10.1016/j.wasman.2015.12.004
- Chagnes, A., & Cote, G. (2010). Séparation du cobalt et du nickel à l'aide du Cyanex® 272 par extraction liquide-liquide. L'Actualité chimique(346), 29-34.
- Cognis, G. (2008). MCT Redbook: Reactivos de Extracción por Solvente y sus Aplicaciones.
- Cytec. (2010). Mining Chemicals Handbook.
- Habashi, F. (2003). Metals from Ores. An Introducction to Extractive Metallurgy.
- Kiddee, P., Naidu, R., & Wong, M. H. (2013). Electronic waste management approaches: An overview. Waste Management, 33, 1237-1250. https://doi.org/https://doi.org/10.1016/j.wasman.2013.01.006
- Li, Y., Hu, J., Fu, M., Tang, J., Dong, L., & Liu, S. (2016). Investigation of intermolecular interactions of mixed extractants of quaternary phosphonium or ammonium chlorides and bis(2,4,4-ethylhexyl)phosphoric acid for metal separation [10.1039/C6RA07813C]. RSC Advances, 6(62), 56772-56779. https://doi.org/10.1039/C6RA07813C
- Lupi, C., & Pilone, D. (2020). Effectiveness of saponified D2EHPA in Zn(II) selective extraction from concentrated sulphuric solutions. Minerals Engineering, 150, 106278. https://doi.org/https://doi.org/10.1016/j.mineng.2020.106278
- Martinez-Ballesteros, G., Valenzuela- Garcia, J. L., Guerrero- Germán, P., Valdez-Salas, B., & Gómez-Álvarez, A. (2024). Separation of palladium from waste electronic card leaching solutions by solvent extraction using a tertiary amine. Revista Mexicana de Ingenieria Química, 3. https://doi.org/https://doi.org/10.24275/rmiq/Proc24380
- Martinez-Ballesteros, G., Valenzuela-Garcia, J. L., Gomez-Alvarez, A., Encinas-Romero, M. A., Mejia-Zamudio, F. A., & Rosas-Durazo, A. d. J. (2023). Base Metals Extraction from Printed Circuit Boards by Pressure Acid Leaching. Minerals. https://doi.org/https://doi.org/10.3390/min13010098
- Omelchuk, K., Stambouli, M., & Chagnes, A. (2018). Investigation of aggregation and acid dissociation of new cationic exchangers for liquid-liquid extraction. Journal of Molecular Liquids, 262, 111-118. https://doi.org/https://doi.org/10.1016/j.molliq.2018.04.082
- Rao, M. D., Singh, K. K., Morrison, C. A., & Love, J. B. (2020). Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv., 10(8), 4300-4309. https://doi.org/https://doi.org/10.1039/C9RA07607G
- Schaeffer, N., Passos, H., Billard, I., Papaiconomou, N., & Coutinho, J. A. P. (2018). Recovery of metalsfrom waste electrical and electronic equipment (WEEE) using unconventionalsolvents based on ionic liquids. Critical Reviews in Environmental Science and Technology, 48(13-15), 859-922. https://doi.org/https://doi.org/10.1080/10643389.2018.1477417
- Segura-Bailón, B., & Lapidus-Lavine, G. (2023). Importance of chemical pretreatment for base metals remotion and its effect on theselective extraction of gold from Printed Circuits Boards (PCBs). Revista Mexicana de Ingeniería Química, 22. https://doi.org/https://doi.org/10.24275/rmiq/IA2335
- Sun, M., Liu, S. Y., Zhang, Y., Liu, M., Yi, X., & Hu, J. (2019). Insights into the saponification process of di(2-ethylhexyl) phosphoric acid extractant: Thermodynamics and structural aspects. Journal of Molecular Liquids, 280, 252-258. https://doi.org/https://doi.org/10.1016/j.molliq.2019.02.025
- Tahmasebizadeh, P., & Javanshir, S. (2021). Solvent Extraction of Zinc from a Bioleaching Solution by Modification of D2EHPA: Optimization and Thermodynamic Studies. Journal of Mining and Environment, 12, 253-269. https://doi.org/https://doi.org/10.22044/jme.2021.10324.1979
- Xie, W., Zhang, L., Yang, J., Zhang, L., & Ju, S. (2019). Separation of Zn(II) from Zn-Ni-Co sulphate solution by di-(2-ethylhexyl)phosphoric acid (D2EHPA) using a slug flow microreactor. Chemical Engineering and Processing - Process Intensification, 123, 107562. https://doi.org/https://doi.org/10.1016/j.cep.2019.107562
- Zhang, Y., Deng, J., Chen, J., Yu, R., & Xing, X. (2014). The electrowinning of zinc from sodium hydroxide solutions. Hydrometallurgy, 146, 59-63. https://doi.org/https://doi.org/10.1016/j.hydromet.2014.03.006.
- Zhu Xiao-lin, X. C.-y., Tang Jie, Hua Yi-xin, Zhang Qi-bo, Liu Hai, Wang Xiang, Huang Meng-ting. (2019). Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. 29(10), 2222-2228. https://www.sciencedirect.com/science/article/pii/S1003632619651289
|