Vol. 23, No. 2 (2024), Bio24219 https://doi.org/10.24275/rmiq/Bio24219


Biochar-packed biofilter for the treatment of gases produced by accumulated sargassum waste


 

Authors

B. Escobar, J. M Baas-López, R. Tapia-Tussell, E. Olguín-Maciel


Abstract

A biofilter was built from the production of biochar obtained from Sargassum spp. (SKPH) as an environmentally friendly option for its application in problems related to the generation of gases such as H2S, CO2, and CH4 that emanate during the decomposition process of accumulated sargassum waste. The sargassum was treated with KOH to obtain an activated biochar, estimating a surface area of 1319 m2 g-1 with an average pore size of 1.447 nm. This surface area value allows its use as a biofilter to control H2S, CO2, and CH4 gases. The analysis of textural properties and structure of biochar were studied by XRD, FTIR, BET, and CHN-S techniques. The characterization results by X-ray diffraction and Raman spectroscopy showed a biochar with amorphous characteristics. In this study, the constructed biofilter was filled with SKPH biochar; this system was interconnected to the reactor containing Sargassum spp. (freshly collected from the beach) and to the portable gas meter. The results showed that sulfur, hydrogen, and nitrogen were significantly higher in the SKPH-LB sample. In general, biochar made it possible to demonstrate its efficient use to control H2S and CO2 produced by the disposal of sargassum waste, becoming a novel strategy to improve the elimination of toxic gases and reduce greenhouse gas emissions.


Keywords

biochar; biofilter; H2S; Sargassum spp., waste.


References

  • Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O., and Almeida, V.C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal 286, 476-484. https://doi.org/10.1016/j.cej.2015.10.099
  • Cao, T., Zheng, Y., and Dong, H. (2023). Control of odor emissions from livestock farms: A review. Environmental Research 225, 115545. https://doi.org/10.1016/j.envres.2023.115545
  • Casadei, R., Baschetti, M.G., Yoo, M.J., Park, H.B., and Giorgini, L. (2020). Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture. Membranes 10, 188. https://doi.org/10.3390/membranes10080188
  • Cox, H.H.J., and Deshusses, M.A. (2002). Co-treatment of H2S and toluene in a biotrickling filter. Chemical Engineering Journal 87, 101-110. https://doi.org/10.1016/S1385-8947(01)00222-4
  • Danila, V., Zagorskis, A., and Januševičius, T. (2022). Effects of water content and irrigation of packing materials on the performance of biofilters and biotrickling filters: A Review. Processes 10, 1304. https://doi.org/10.3390/pr10071304
  • Das, J., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., and van Hullebusch, E.D. (2019). Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresource Technology 273, 581-591.           https://doi.org/10.1016/j.biortech.2018.11.052
  • de Oliveira, J.L.B., Nascimento, B.O., Gonçalves, D.V., Santiago, R.G., Lucena, S.M.P. de Azevedo, D.C.S. and Bastos-Neto, M. (2020). Effect of ultramicropores on the mechanisms of H2S retention from biogas. Chemical Engineering Research and Design 154, 241-249. https://doi.org/10.1016/j.cherd.2019.12.019
  • Elsayed, Y., Seredych, M., Dallas, A., and Bandosz, T.J. (2009). Desulfurization of air at high and low H2S concentrations. Chemical Engineering Journal 155, 594-602. https://doi.org/10.1016/j.cej.2009.08.010
  • Feng, Y., Lu, J., Wang, J., Mi, J., Zhang, M., Ge, M., Li, Y., Zhang, Z., and Wang, W. (2020). Desulfurization sorbents for green and clean coal utilization and downstream toxics reduction: A review and perspectives. Journal of Cleaner Production 273, 123080. https://doi.org/10.1016/j.jclepro.2020.123080
  • Francoeur, M., Ferino-Pérez, A., Yacou, C., Jean-Marius, C., Emmanuel, E., Chérémond, Y., Jauregui-Haza, U., and Gaspard, S. (2021). Activated carbon synthetized from Sargassum (sp) for adsorption of caffeine: Understanding the adsorption mechanism using molecular modeling. Journal of Environmental Chemical Engineering 9, 104795. https://doi.org/10.1016/j.jece.2020.104795
  • Gutiérrez-Bonilla, E., Granados-Correa, F., Roa-Morales, G., and Balderas-Hernández, P. (2022). CO2 capture on an optimally prepared highly microporous KOH-activated carbon from rice husk. Revista Mexicana de Ingeniera Quimica 21. https://doi.org/10.24275/rmiq/Mat2528
  • Han, X., Chen, H., Liu, Y., and Pan, J. (2020). Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. Journal of Natural Gas Science and Engineering 73, 103068. https://doi.org/10.1016/j.jngse.2019.103068
  • Hervé, V., Lambourdière, J., René-Trouillefou, M., Devault, D.A., and Lopez, P.J. (2021). Sargassum differentially shapes the microbiota composition and diversity at coastal tide sites and inland storage sites on Caribbean islands. Frontiers in Microbiology 12, 701155. https://doi.org/10.3389/fmicb.2021.701155
  • Huang, D., Wang, N., Bai, X., Chen, Y., and Xu, Q. (2022). The influencing mechanism of O2, H2O, and CO2 on the H2S removal of food waste digestate-derived biochar with abundant minerals. Biochar 4, 71. https://doi.org/10.1007/s42773-022-00199-2
  • Izhar, T.N.T., Kee, G.Z., Saad, F.N.M., Rahim, S.Z.A., Zakarya, I.A., Besom, M.R.C., Ibad, M., and Syafiuddin, A. (2022). Adsorption of hydrogen sulfide (H2S) from municipal solid waste by using biochars. Biointerface Research in Applied Chemistry 12, 8057-8069. https://doi.org/10.33263/BRIAC126.80578069
  • Koch, M. S., Johnson, C. R., Madden, C. J., and Pedersen, O. (2022). Low irradiance disrupts the internal O2 dynamics of seagrass (Thalassia testudinum) leading to shoot meristem H2S intrusion. Aquatic Botany 181, 103532.        https://doi.org/10.1016/j.aquabot.2022.103532
  • Letelier-Gordo, C.O., Aalto, S.L., Suurnäkki, S., and Pedersen, P.B. (2020). Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste. Aquacultural Engineering 89, 102062. https://doi.org/10.1016/j.aquaeng.2020.102062
  • Maneein, S., Milledge, J.J., Harvey, P.J., and Nielsen, B.V. (2021). Methane production from Sargassum muticum: effects of seasonality and of freshwater washes. Energy and Built Environment 2, 235-242. https://doi.org/10.1016/j.enbenv.2020.06.011
  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., and Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617-1628. https://doi.org/10.1016/j.carbon.2009.01.050
  • Olortiga-Asencios, Y., Malvestio, L., Perpetuo, E., and Rotta, A. (2022). Characterization of seaweeds collected from Baixada Santista litoral, and their potentialuses as biosorbents of heavy metal cations. Revista Mexicana de Ingeniería Química 21, 2600. https://doi.org/10.24275/rmiq/IA2600
  • Pérez-Salcedo, K.Y., Alonso-Lemus, I.L., Quintana, P., Mena-Durán, C.J., Barbosa, R., and Escobar, B. (2019). Self-doped Sargassum spp. derived biocarbon as electrocatalysts for ORR in alkaline media. International Journal of Hydrogen Energy 44, 12399–12408. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.10.073
  • Permana, B.H., Thiravetyan, P., and Treesubsuntorn, C. (2022). Effect of airflow pattern and distance on removal of particulate matters and volatile organic compounds from cigarette smoke using Sansevieria trifasciata botanical biofilter. Chemosphere 295, 133919. https://doi.org/10.1016/j.chemosphere.2022.133919
  • Rahmani, M., Mokhtarani, B., and Rahmanian, N. (2023). High pressure adsorption of hydrogen sulfide and regeneration ability of ultra-stable Y zeolite for natural gas sweetening. Fuel 343, 127937. https://doi.org/10.1016/j.fuel.2023.127937
  • Sethupathi, S., Zhang, M., Rajapaksha, A.U., Lee, S.R., Nor, N.M., Mohamed, A.R., Al-Wabel, M., Lee, S.S., and Ok, Y.S. (2017). Biochars as potential adsorbers of CH4, CO2 and H2S. Sustainability (Switzerland) 9, 121. https://doi.org/10.3390/su9010121
  • Sun, L., Fu, Y., Tian, C., Yang, Y., Wang, L., Yin, J., Ma, J., Wang, R., and Fu, H. (2014). Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors. ChemSusChem 7, 1637-1645. https://doi.org/10.1002/cssc.201400048
  • Thompson, T.M., Young, B.R., and Baroutian, S. (2020). Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery. Fuel 279, 118527. https://doi.org/10.1016/j.fuel.2020.118527
  • Tomczyk, A., Sokołowska, Z., and Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3
  • Truong, Q.M., Nguyen, T.B., Chen, W.H., Chen, C.W., Patel, A.K., Bui, X.T., Singhania, R.R., and Dong, C.Di. (2023). Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum. Bioresource Technology 370, 128524.         https://doi.org/10.1016/j.biortech.2022.128524
  • van Tussenbroek, B.I., Hernández-Arana, H.A., Rodríguez-Martínez, R.E., Espinoza-Avalos, J., Canizales-Flores, H.M., González-Godoy, C.E., Barba-Santos, M.G., Vega-Zepeda, A., and Collado-Vides, L. (2017). Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Marine Pollution Bulletin 122, 272-281. https://doi.org/10.1016/j.marpolbul.2017.06.057
  • Wang, X., Qi, L., and Wang, H. (2020). Carbon nano-beads collected from candle soot as an anode material with a highly pseudocapacitive Na+ storage capability for dual-ion batteries. Ionics 26, 4533-4542. https://doi.org/10.1007/s11581-020-03630-5
  • Yang, Y., Kong, Z., Ma, H., Shao, Z., Wang, X., Shen, Y., and Chai, H. (2023). Insights into the transport and bio-degradation of dissolved inorganic nitrogen in the biochar-pyrite amended stormwater biofilter using dynamic modeling. Journal of Environmental Management 347, 119152. https://doi.org/10.1016/j.jenvman.2023.119152
  • Yaw Atiglo, D., Jayson-Quashigah, P.N., Sowah, W., Tompkins, E.L., and Addo, K.A. (2024). Misperception of drivers of risk alters willingness to adapt in the case of Sargassum influxes in West Africa. Global Environmental Change 84, 102779. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2023.102779
  • Zhang, C., Sun, S., He, S., and Wu, C. (2022). Direct air capture of CO2 by KOH-activated bamboo biochar. Journal of the Energy Institute 105, 399-405. https://doi.org/10.1016/j.joei.2022.10.017