Vol. 23, No. 2 (2024), IA24118 https://doi.org/10.24275/rmiq/IA24118


HCO3- production from 17β-estradiol oxidation by photo-Fenton as a strategy to avoid the generation of greenhouse gases 


 

Authors

Y.A. Guerrero-Martínez, C. Romo-Gómez, C. Camacho-López, O.A. Acevedo-Sandoval, C. A. González-Ramírez, S. Montiel-Palma


Abstract

17β-estradiol (E2) is a natural estrogen considered the major endocrine disruptor in the environment at ng L-1. Advanced oxidation processes (AOP) such as photo-Fenton, have shown promising results for E2 oxidation. However, in AOP and conventional process, the final destination of E2 is not reported, nor is it mentioned if it has been transformed into simpler species such as CO2, a greenhouse gas. Therefore, the aim of this work was to evaluate the production of HCO3- from the oxidation of 17β-estradiol by a photo-Fenton process as a strategy to avoid the generation of greenhouse gases in water. Batch assays were realized with E2-C concentrations (mg L-1) of 3.5, 4.5, and 7.5 at pH values of 5, 10, and 7.5, using FeSO4·7H2O (4) and H2O2(10), respectively. An EE2-C of 64.99 % was obtained, and the oxidation of E2 followed a first-order reaction model, where coefficients of 84.30* 10-3 min-1. A predominant production of 3.73 ± 0.21 mg HCO3--C L-1 was observed, compared to 0.45 ± 0.01 mg CO2-C L-1 (pH 10). The Fenton process predominantly oxidized E2 to HCO3-, which it is considered innocuous for the environmental. The process was not inhibited at pH 10.


Keywords

17β-estradiol, advanced oxidation, photo-Fenton, dioxide carbon, bicarbonate.


References

  • Aziz, M. and Ojumu, T. (2020). Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes 10(3), 37. Doi:  https://doi.org/10.3390/membranes10030037
  • Bennett, J. L., Mackie, A. L., Park, Y. and Gagnon, G. A. (2018). Advanced oxidation processes for treatment of 17β-Estradiol and its metabolites in aquaculture wastewater. Aquacultural Engineering 83, 40–46. Doi: https://doi.org/10.1016/j.aquaeng.2018.08.003
  • Brienza, M., Ahmed, M. M., Escande, A., Plantard, G., Scrano, L., Chiron, S., Bufo, S. A. and Goetz, V. (2014). Relevance of a photo-Fenton like technology based on peroxymonosulphate for 17β-estradiol removal from wastewater. Chemical Engineering Journal 257, 191-199. Doi: https://doi.org/10.1016/j.cej.2014.07.061
  • Brion, F., Tyler, C. R., Palazzi, X., Laillet, B., Porcher, J. M., Garric, J. and Flammarion, P. (2004). Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio). Aquatic Toxicology 68 (3), 193-217. Doi: 10.1016/j.aquatox.2004.01.022
  • Butt, A. L., Mpinga, J. K. and Tichapondwa, S. M. (2021). Photo-Fenton Oxidation of Methyl Orange Dye Using South African Ilmenite Sands as a Catalyst. Catalysts 11(12), 1452. Doi: https://doi.org/10.3390/catal11121452
  • Camacho, C., Romo, C., Otazo, M. E., Acevedo, A. O., García, E. and Juárez, L. (2022). Biotransformation of 17 β -Estradiol through a Denitrifying Sludge. International Journal of Environmental Research and Public Health 19, 13326. Doi: https://doi.org/10.3390/ijerph192013326
  • Castellanos, R. M., Bassin, J. P., Bila, D. M. and Dezotti, M. (2021). Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate. Enviromental Pollution 274, 116551. Doi: http://doi.org/10.1016/j.envpol.2021.116551
  • Du, B., Fan, G., Yu, W., Yang, S., Zhou, J. and Lou, J. (2020). Occurrence and risk assessment of steroid estrogens in environmental water samples: a five-year worldwide perspective. Environmental Pollution 267, 115405. Doi: https://doi.org/10.1016/j.envpol.2020.115405
  • Fang, T. Y., Praveena, S. M., Aris, A. Z., Ismail, S. N. S. and Rasdi, I. (2019a). Quantification of selected steroid hormones (17β-Estradiol and 17α-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia). Chemosphere 215, 153-162. Doi: https://doi.org/10.1016/j.chemosphere.2018.10.032
  • Fang, W., Peng, Y., Muir, D., Lin, J. and Zhang, X. (2019b). A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environment international, 131, 104994. Doi: https://doi.org/10.1016/j.envint.2019.104994
  • Feng, X., Tu, J., Ding, S., Wu, F. and Deng, N. (2005). Photodegradation of 17-estradiol in water by UV–vis/Fe(III)/H2O2 system. Journal of hazardous materials B127, 129-133. Doi: https://doi.org/10.1016/j.jhazmat.2005.06.039
  • Fernández, L., Louvado, A., Esteves, V. I., Gomes, N. C. M., Almeida, A. and Cunha, Â. (2017). Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials 323, 359–366. Doi: https://doi.org/10.1016/j.jhazmat.2016.05.029
  • Frontistis, Z., Xekoukoulotakis, N. P., Hapeshi, E., Venieri, D., Fatta-Kassinos, D. and Mantzavinos, D. (2011). Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chemical Engineering Journal 178, 175-182. Doi: https://doi.org/10.1016/j.cej.2011.10.041
  • Gong, K., Lin, Y., Wu, P., Jin, X., Owens, G. and Chen, Z. (2022). Removal mechanism of 17β-estradiol by carbonized green synthesis of Fe/Ni nanoparticles. Chemosphere 291, 132777. Doi: https://doi.org/10.1016/j.chemosphere.2021.132777
  • Gonzales, E. G., Avalos, G., Gonzales, J., Mujica, A., Terán, R., Briceño, G., Quispe, G. M., Parra, P. J. and Villanueva, J. A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química 22(3), IA2370. Doi: https://doi.org/10.24275/rmiq/IA2370
  • Gowtham, B. and Pauline, S. (2021). Experimental study on performance assessment of Fenton and photo-Fenton oxidation process for methylene blue. Proceedings of the International Academy of Ecology and Environmental Sciences 11(2), 43-51. Doi: http://www.iaees.org/publications/journals/piaees/articles/2021-11(2)/assessment-of-Fenton-oxidation-process.pdf
  • Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Yousefi, M., Mohammadi, A. A. and Changani, F. (2020). Recent trends in disposal and treatment technologies of emerging-pollutants-A critical review.  TrAC Trends in Analytical Chemistry 122, 115744. Doi: https://doi.org/10.1016/j.trac.2019.115744
  • Kim, S. H., Tian, Q., Fang, J. and Sung, S. (2015). Removal of 17-β estradiol in water by sonolysis. International Biodeterioration and Biodegradation 102, 11–14. Doi:  https://doi.org/10.1016/j.ibiod.2015.03.017
  • Kovacic, M., Kopcic, N., Kusic, H. and Bozic, A. L. (2018). Solar driven degradation of 17β-estradiol using composite photocatalytic materials and artificial irradiation source: Influence of process and water matrix parameters. Journal of Photochemistry and Photobiology A: Chemistry 361, 48–61. Doi: https://doi.org/10.1016/j.jphotochem.2018.05.015
  • Laverde-Cerda, E., Altamirano-Briones, A., Zárate-Pozo, P., Sandoval-Pauker, C., Ramos-Guerrero, L., Muñoz-Bisesti, F. & Vargas-Jentzsch, P. (2020). Iron removal for kinetic studies on fenton treatments: a new approach based on ferrocyanide. Revista Mexicana de Ingeniería Química 19(1), 159-164. Doi: https://doi.org/10.24275/rmiq/Cat545
  • Liu, R., Dai, Y., Feng, Y., Sun, S., Zhang, X., An, C. & Zhao, S. (2023). Hydroxyl radical production by abiotic oxidation of pyrite under estuarine conditions: The effects of aging, seawater anions and illumination. Journal of environmental science 123, 715-727. Doi: https://doi.org/10.1016/j.jes.2023.02.016
  • Lyubimenko, R., Richards, B. S., Schäfer, A. I., & Turshatov, A. (2022). Noble-metal-free photosensitizers for continuous-flow photochemical oxidation of steroid hormone micropollutants under sunlight. Journal of Membrane Science 642, 119981. Doi: https://doi.org/10.1016/j.memsci.2021.119981
  • Mansouri, F., Chouchene, K., Roche, N., & Ksibi, M. (2021). Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Applied Sciences 11(14), 6659. Doi: https://doi.org/10.3390/app11146659
  • Medrano, Z. Y., Medina, J. C., Marcelo, H., Castillón, A, Zamora, R., Casillas, M. E., Jumilla, A. A. and Mayorga, P. (2022). Domestic wastewater treatment by electrocoagulation system using photovoltaic solar energy. Revista Mexicana de Ingeniería Química 21(2), IA2809. Doi: https://doi.org/10.24275/rmiq/IA2809
  • Olatunde, O. C., Kuvarega, A. T., Onwudiwe & D. C. (2020). Photo enhanced degradation of contaminants of emerging concern in waste water. Emerging Contaminants 6, 283-302. Doi:  https://doi.org/10.1016/j.emcon.2020.07.006
  • Orozco, L., Gómez, L.M., Elizalde, A., Natividad, R., Fabian, L., SanJuan, N. (2019). 17-β-Estradiol: Significant reduction of its toxicity in water treated by photocatalysis. Science Total of Environment 669, 955–963. Doi: https://doi.org/10.1016/j.scitotenv.2019.03.190
  • Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B. & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. Journal of Enviromental Chemical Engineering 9, 105966. Doi: https://doi.org/10.1016/j.jece.2021.105966
  • Pinoargote-Chang, M. H., Fernández-Andrade, A., Zambrano-Intriago, L. A., Quiroz-Fernández, L. S., Villanueva-Ramos, G., Montenegro, M. C.B.S.M., & Rodríguez-Díaz, J. M. (2022). Photo-Fenton process for the degradation of blue 1 dye and estradiol benzoate hormone in binary system: Application of sunlight and UV-C radiation. Case Studies in Chemical and Environmental Engineering 6, 100226. Doi: https://doi.org/10.1016/j.cscee.2022.100226
  • Qian, M., Yang, L., Chen, X., Li, K., Xue, W., Li, Y., Zhao, H., Cao, G., Guan, X., & Shen, G. (2020). The treatment of veterinary antibiotics in swine wastewater by biodegradation and Fenton-like oxidation. Science of the Total Environment 710, 136299. Doi: https://doi.org/10.1016/j.scitotenv.2019.136299
  • Ren, C., Tan, X., Huang, C., Zhao, H., & Lan, W. (2022). Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. Water 14(9), 1399. Doi: https://doi.org/10.3390/w14091399
  • Shareef, A., Angove, M. J., Wells, J. D., & Johnson, B. B. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α- ethynylestradiol, and bisphenol A. Journal of Chemical and Engineering Data 51(3), 879–881. Doi: https://doi.org/10.1021/je050318c
  • Singa, P. K., Isa, M. H., Lim, J. W., Ho, Y. C., & Krishnan, S. (2021). Photo-Fenton process for removal of polycyclic aromatic hydrocarbons from hazardous waste landfill leachate. International Journal of Environmental Science and Technology 18, 3515-3526. Doi: https://doi.org/10.1007/s13762-020-03010-6
  • Srikanth, K. S., Sukesh, K., Rao, A. R., Pavan, G., & Ravishankar, G. A. (2019). Emerging Contaminants Effect on Aquatic Ecosystem: Human Health Risks-A Review. Agricultural research and technology 19(4), 556104. Doi: 10.19080/ARTOAJ.2019.19.556104
  • Sun, S. X., Zhang, Y. N., Lu, D. L., Wang, W.L., Limbu, S. M., Chen, L.Q., Zhang, M. L., & Du, Z.Y. (2019). Concentration-dependent effects of 17β-estradiol and bisphenol A on lipid deposition, inflammation and antioxidant response in male zebrafish (Danio rerio). Chemosphere 237, 124422. Doi: https://doi.org/10.1016/j.chemosphere.2019.124422
  • Valdez-Carrillo, M., Abrell, L., Ramírez-Hernández, J., Reyes-López, J. A., & Carreón-Diazconti, C. (2020). Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environmental Science and Pollution Research 27 (36), 44863-44891. Doi. https://doi.org/10.1007/s11356-020-10842-9
  • Vilela, C. L. S., Bassin, J. P., & Peixoto, R. S. (2018). Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environmental pollution 235, 546-559. Doi: https://doi.org/10.1016/j.envpol.2017.12.098
  • Yang, L., Su, W., He, Y., Yan, B., Luo, L., & Luan, T. (2023). Dark transformation from 17β-estradiol to estrone initiated by hydroxyl radical in dissolved organic matter. Water Research 230, 119570. Doi: https://doi.org/10.1016/j.watres.2023.119570
  • Zhao, B. H., Sun, Q., Chen, J., Zhang, J., Zhang, X. Y., Liu, B. J., & Li, J. (2020). 17 beta-estradiol biodegradation by anaerobic granular sludge: Effect of iron sources. Scientific Reports 10, 7777. Doi: https://doi.org/10.1038/s41598-020-64557-5
  • Zhao, Y., Huang, M., Ge, M., Tang, X., & Liu, L. (2010). Influence factor of 17β-estradiol photodegradation by heterogeneous Fenton reaction. Journal of Environmental Monitoring 12, 271-279. Doi: https://doi.org/10.1039/B907804E
  • Zhu, Y., Shao, Y., Wei, M., Yu, K., Zhang, Y., Huang, J., & Yin, X. (2021). Degradation of 17β-estradiol by UV/persulfate in different water samples. Journal of water & and health 19(5), 796. Doi: https://doi.org/10.2166/wh.2021.031 
  • Zolkefli, N., Sharuddin, S. S., Yusoff, M. Z. M., Hassan, M. A., Maeda, T., & Ramli, N. (2020). A review of current and emerging approaches for water pollution monitoring. Water 12(12), 3417. Doi: https://doi.org/10.3390/w12123417