Vol. 23, No. 3 (2024), IA24251 https://doi.org/10.24275/rmiq/IA24251


Effect of exogenous phenazine addition on crude heavy oil degradation by Pseudomonas aeruginosa TGC04


 

Authors

A. A. Galvão-Viana, H. Borchardt, J. V. Dantas, D. S. Bernardes-Dias, I. P. Gurgel-Amaral, U. Vasconcelos


Abstract

Previous studies have shown that phenazines contribute to hydrocarbons (HC) transformation by Pseudomonas aeruginosa. The rodis capable of degrading HC shortly after exposure to oil; and this study aimed to assess the effect of phenazine methosulfate (PMS), on the removal of HC by bioaugmentation with pyocyanin-producing P. aeruginosa TGC04. Microcosms were prepared containing fine sand and oil-contaminated beach sand (1:4). The pre-inoculum was prepared with pasteurized sand enriched with 10 µmol/L of PMS; supplemented with barley malt bagasse and incubated at 29±1°C for 10 days. Afterwards, portions of the inoculum were added to the microcosms (1:10; 1:100 and 1:1000). The total petroleum hydrocarbons (TPH) were reduced by up to ≈49%, while the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were reduced by ≈37 and 56%. P. aeruginosa TGC04 preferentially degraded 4-6 ring PAHs (80-89%). The 2-3 ring PAHs were removed by up to ≈37%. In the presence of PMS, there was a significant reduction in HC; the highest rates of degradation, however, were observed without PMS (1:100). As a contribution, this study expands the knowledge that the hydrocarbonoclastic activity of P. aeruginosa is not increased by addition of exogenous phenazines but favors the removal of 4-6 ring PAHs.


Keywords

Bioremediation, Allochthonous bioaugmentation, Encompassed inoculum, Phenazine Methosulphate, Polycyclic Aromatic Hydrocarbons.


References

  • Abdelaziz, A.A., Kamer, A.M.A., Al-Monofy, K.B., and Al-Madboly, L.A. (2022). A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Microbial Cell Factories 21, 262. https://doi.org/10.1186/s12934-022-01988-x
  • Abena, M.T.B., Li, T., Shah, M.N., and Zhong, W. (2019). Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere 234, 864-874. https://doi.org/10.1016/j.chemosphere.2019.06.111
  • Abou, P., El Feghali, R., and Nawas, T. (2018). Extraction and purification of pyocyanin: a simpler and more reliable method. MedCrave Online Journal of Toxicology 4, 417-422. https://doi.org/10.15406/mojt.2018.04.00139
  • Anjos, R.B., Silva, W.P.N., Silva, A.R., Medeiros, G.F., Silva, A.A.D., Barros, S.R.S., Silva, D.R., and Carvalho Filho, E.V. (2023). Evaluation of toxicity for Mysidopsis junia especies in cases of oil spill in the Brazilian Potiguar basin. Revista Foco 16, e1701. https://doi.org/10.54751/revistafoco.v16n4-078
  • Araújo, K.C., Barreto, M.C., Siqueira, A.S., Freitas, A.C.P., Oliveira, L.G., Bastos, M.E.P.A., Rocha, M.E.P., Silva, L.A., and Fragoso, W.D. (2020). Oil spill in northeastern Brazil: Application of fluorescence spectroscopy and PARAFAC in the analysis of oil-related compounds. Chemosphere 267, 129154. https://doi.org/10.1016/j.chemosphere.2020.129154
  • Arruda, R.R.A., Oliveira, B.T.M., Bonifácio, T.T.C., Morais, V.C., Amaral, and I.P.G., Vasconcelos, U. (2019). Activity of two exometabolites produced by Escherichia coli on the synthesis of pyocyanin. International Journal of Advanced Engineering Research Science 6, 267–271. https://dx.doi.org/10.22161/ijaers.6732
  • Bahari, S., Zeighami, H., Mirshahabi, H., Roudashti, S., and Haghi, F. (2017). Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. Journal of Global Antimicrobial Resistance 10, 21-28. https://doi.org/10.1016/j.jgar.2017.03.006
  • Bello-Akinosho, M., Makofane, R., Adeleke, R., Thantsha, M., Pillay, M., and Chirima, GJ. (2016). Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. BioMed Research International 2016, 5798593. https://doi.org/10.1155/2016/5798593
  • Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong, L., Bayer, P., Janning, P., Thomashow, L.S., and Mavrodi, D.V. (2004). Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proceedings of the National Academy of Sciences of the United States of America 101, 16431–16436. https://doi.org/10.1073/pnas.0407371101
  • Brzeszcz, J., Kapusta, P., Steliga, T., and Turkiewicz, A. (2020). Hydrocarbon removal by two differently developed microbial inoculants and comparing their actions with biostimulation treatment. Molecules 25, 661. https://doi.org/ 10.3390/molecules25030661
  • Canul-Chan, M., Rodas-Junco, B.A., Uribe-Riestra, E., and Houbron, E. (2023). Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2,3 dioxygenase activity. Revista Mexicana de Ingeniería Química 22, Bio2932. https://doi.org/10.24275/rmiq/Bio2932
  • Cavalcanti, T.G., Souza, A.F., Ferreira, G.F., Dias, D.S.B., Severino, L.S., Morais, J.P.S., Sousa, K.A., Vasconcelos, U. (2019). Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste & Biomass Valorization. 10, 205-214. https://doi.org/10.1007/s12649-017-0041-8
  • Cawley, A., Golding, S., Goulsbra, A., Hoptroff, M., Kumaran, S., and Marriott, R. (2019). Microbiology insights into boosting salivary defenses through the use of enzymes and proteins. Journal of Dentistry 80, S19–S25. https://doi.org/10.1016/j.jdent.2018.10.010
  • Charette, M.A., and Sholkovitz, E.R. (2002). Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters 29, 1444. https://doi.org/10.1029/2001GL014512
  • Chen, Y-A., Liu, P-W.G., Whang, L-M., Wu Y-J., and Cheng, S-S. (2019). Biodegradability and microbial community investigation for soil contaminated with diesel blending with biodiesel. Process Safety & Environmental Protection 130, 115-125. https://doi.org/10.1016/j.psep.2019.07.001
  • Chikere, C.B., and Fenibo, E.O. (2018). Distribution of PAH-ring hydroxylating dioxygenase genes in bacteria isolated from two illegal oil refining sites in the Niger Delta, Nigeria. Scientific African 1, e00003. https://doi.org/10.1016/j.sciaf.2018.e00003
  • Chin-A-Wong, T.F.C., Bloemberg, G.V., and Lugtenberg, B.J.J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist 157, 503-523. https://doi;org/ 10.1046/j.1469-8137.2003.00686.x
  • Cisneros-de la Cueva, S., Martínez-Prado, M.A., Rojas-Contreras, J.A., López-Miranda, J. (2024) Effect of surfactants on the removal of total petroleum hydrocarbons and microbial communities during bioremediation of a contaminated mining soil. Revista Mexicana de Ingeniería Química 23, Bio24172. https://doi.org/10.24275/rmiq/Bio24172
  • Costa, K.C., Bergkessel, M., Saunders, S., Korlach, J., and Newman, D.K. (2015). Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity. mBio 6, e01520. https://doi.org/10.1128/mBio.01520-15
  • Crone, S., Vives-Flórez, M., Kvich, L., Saunders, A.M., Malone, M., Nicolaisen, M.H., Martínez-García, E., Rojas-Acosta, C., Gomez-Puerto, M.C., Calum. H., Whiteley, M., Kolter, R., and Bjarnsholt, T. (2019). The environmental occurrence of Pseudomonas aeruginosa. Journal of Pathology, Microbiology & Immunology 128, 220-231. https://doi.org/10.1111/apm.13010
  • Das, N., and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International 2011, 941810. https://doi.org/10.4061/2011/941810
  • Das, T., Kutty, S.K., Kumar, N., and Manefield, M. (2013). Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8 (3), e85299. https://doi.org/10.1371/journal.pone.0058299
  • Das, P., and Ma, L.Z. (2013). Pyocyanin pigment assisting biosurfactant-mediated hydrocarbon emulsification. International Biodegradation & Biodeterioration. 85, 278-283. https://doi.org/10.1016/j.ibiod.2013.07.013
  • Del’Arco, J.P., and de França, F.P. (2001). Influence of oil contamination levels on hydrocarbon in sandy sediment. Environmental Pollution 110, 515-519. https://doi.org/10.1016/S0269-7491(00)00128-7
  • Denning, G.M., Iyer, S.S., Reszka, K.J., O’Malley, Y., Rasmussen, G.T., and Britigan, B.E. (2003). Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cell. American Journal of Physiology-Lung Cellular & Molecular Physiology 285, L584-L592. https://doi.org/0.1152/ajplung.00086.2003
  • Depke, T., Thöming, J.G., Kordes, A., Häussler, S., and Brönstrup, M. (2020). Untargeted LC-MS metabolomics differentiates between virulent and avirulent clinical strains of Pseudomonas aeruginosa. Biomolecules 10, 1041. https://doi.org/10.3390/biom10071041
  • Dietrich, L.E.P., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K. (2006). The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology 61, 1308–1321. https://doi.org/10.1111/j.1365-2958.2006.05306.x
  • Disner, G.R., and Torres, M. (2020). The environmental impacts of 2019 oil spill on the Brazilian coast: Overview. Revista Brasileira de Gestão Ambiental & Sustentabilidade 7, 241-255. https://doi.org/10.21438/rbgas(2020)071518
  • Dourado, R., Guedes, T.P., Bonifácio, T.T.C., Cavalcanti, T.G., Travassos, R.A., and Vasconcelos, U. (2017). Determination of microbial contaminants recovered from Brazilian petrol stations. Revista Mexicana de Ingeniería Química 16, 984-991.
  • Duquenne, P., Chenu, C., Richard, G., and Catroux, G. (1999). Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS Microbiology Ecology 29, 331-339. https://doi.org/10.1111/j.1574-6941.1999.tb00624.x
  • Estevo, M.A., Lopes, P.F.M., Oliveira Jr, J.G.C., Junqueira, A.B., Santos, A.P.O., Lima, J.A.S., Malhado, A.C.M., Ladle, R.J., and Campos-Silva, J.V. (2021). Immediate social and economic impacts of a major oil spill on Brazilian coastal fishing communities. Marine Pollution Bulletin. 164, 111984. https://doi.org/ https://doi.org/10.1016/j.marpolbul.2021.111984
  • Fernandez, M., Pereira, P.P., Agostini, E., and González O.S. (2019). How the bacterial community of a tannery effluent responds to bioaugmentation with the consortium SFC 500-1. Impact of environmental variables. Journal of Environmental Management 247, 46-56. https://doi.org/10.1016/j.jenvman.2019.06.055
  • Filinov, A.E., Akhmetov, L.I., Puntis, I.F., Esikova, T.Z., Gafarov, A.B., Kosheleva, I.A., and Boronin, A.M. (2010). Horizontal transfer of catabolic plasmids and naphtalene biodegradation in open soil. Microbiology 79, 184-190. https://doi.org/10.1134/S0026261710020098
  • Finlayson, E.A., and Brown, P.D. (2011). Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented Pseudomonas aeruginosa. West Indian Medical Journal 60, 24-32.
  • Fitzpatrick, D.A (2009). Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. Journal of Molecular Evolution 2009. 68, 171–185. https://doi.org/10.1007/s00239-009-9198-5
  • Franco-Hernández, O., Mckelligan-Gonzalez, A.N., Lopez-Olguin, A.M., Espinosa-Ceron, F., Escamilla-Silva, E., Dendooven, L. (2003). Dynamics of carbon, nitrogen and phosphorus in soil amended with irradiated, pasteurized and limed biosolids. Bioresource Technology. 87, 93-102. https://doi.org/10.1016/S0960-8524(02)00188-8
  • Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L., and Schomburg, D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology 12, 1734-1747. https://doi.org/10.1111/j.1462-2920.2010.02253.x
  • Gonçalves, T., and Vasconcelos, U. (2021). Colour me blue: The history and the biotechnological potential of pyocyanin. Molecules 26, 927. https://doi.org/10.3390/molecules26040927
  • Haghollahi, A., Fazaelipoor, M.H., and Schaffie, M. (2016). The effect of soil type on the bioremediation of petroleum contaminated soils. Journal of Environmental Management 180, 197-201. https://doi.org/10.1016/j.jenvman.2016.05.038
  • Huang, Y., He, Z., Xu, L., Yang, B., Hou, Y., Lei, L., and Li, Z. (2021). Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. Environmental Science Pollution Research 28, 47562-47573. https://doi.org/10.1007/s11356-021-13942-2
  • Ilori, M.O.N., and Amund, D-I. (2000). Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Zeitschrift für Naturforschung C, A journal of biosciences 55, 890-897. https://doi.org/10.1515/znc-2000-11-1208
  • Innemanová, P., Filipová, A., Michalíková, K., Wimmerová, L., and Cajthaml, T. (2018). Bioaugmentation of PAH-contaminated soils: A novel procedure for introduction of bacterial degraders into contaminated soil. Ecological Engineering 118, 93-96. https://doi.org/10.1016/j.ecoleng.2018.04.014
  • ISO 13320:2020. (2020). Particle size analysis — Laser diffraction methods. Geneve, Switzerland.
  • Jabłońska, J., Augustyniak, A., Dubrowska, D., and Rakoczy, R. (2023). The two faces of pyocyanin - why and how to steer its production? World Journal of Microbiology & Biotechnology 39, 103. https://doi.org/10.1007/s11274-023-03548-w
  • Jacques, R.J.S., Bento, F.M., Antoniolli, Z.I., and Camargo F.A.O. (2007). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons. Ciência Rural 37, 1192-1201. https://doi.org/ 10.1016/j.biotechadv.2015.05.003
  • Jahn, B., Jonasson, N.S.W., Hu, H., Singer, H., Pol, A., Good, N.M., Op den Camp, H.J.M., Martinez-Gomez, N.C., and Daumann, L.J. (2020). Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays. Journal of Biological Inorganic Chemistry 25, 199–212. https://doi.org/10.1007/s00775-020-01752-9
  • Kapitanov, I.V., Sudheer, S.M., Yadav, T., Gosh, K.K., Gethergood, N., Gupta, V.K., Karpichev, Y. (2023). Sustainable phenylalanine-derived SAILs for solubilization of polycyclic aromatic hydrocarbons. Molecules 28, 4185. https://doi.org/10.3390/molecules28104185
  • Karamalidis, A.K., Evangelou, A.C., Karabika, E., Koukkou, A.I., Drainas, C., and Voudrias, E.A. 2010. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresourse Technology. 101, 6545-6552. https://doi.org/10.1016/j.biortech.2010.03.055
  • Lessa, G.C., Teixeira, C.E.P., Pereira, J., and Santos F.M. (2021). The 2019 Brazilian oil spill: Insights on the physics behind the drift. Journal of Marine Systems 222, 103586. https://doi.org/10.1016/j.jmarsys.2021.103586
  • Leys, N.M., Bastiens, L., Verstraete, W., and Springael, D. (2005). Influence of the carbon/nitrogen/phosphorus ration on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied & Environmental Biotechnology 66, 726-736. https://doi.org/10.1007/s00253-004-1766-4
  • Lladó, S., Solanas, A.M., Lapuente, J., Borràs, M., and Viñas, M. (2012). A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Science of the Total Environment 435-436, 262-269. https://doi.org/10.1016/j.scitotenv.2012.07.032
  • Mangwani, N., Kumari, S., and Das S. (2015). Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Applied Microbiology & Biotechnology 99, 10283-10297. https://doi.org/10.1007/s00253-015-6868-7
  • McRosea, D.L., Lia, J., and Newman, D.K. (2023). The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. PNAS 120, 2217951120. https://doi.org/10.1073/pnas.2217951120
  • Mirlean, N., Garcia, F., Baisch, P., Quintana, G.C., Agnes, F. (2013). Sandy beaches contamination by arsenic, a result of near shore sediment diagenesis and transport (Brazilian coastline). Estuarine, Coastal & Shelf Science 135, 241-247. https://doi.org/10.1016/j.ecss.2013.10.020
  • Mittal, A., and Singh, P. (2009). Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian Journal of Experimental Biology 47, 760-765.
  • Nobre, P., Lemos, A.T., Giarolla, E., Camayo, R., Namikawa, L., Kampel, M., Rudorff, N., Bezerra, DX., Lorenzzetti, J., Gomes, J., Silva Jr, M.B., Lage, C.P.M., Paes, R.L., Beisl, C., Lobão, M.M., Bignelli, P.A., Moura, N., Galvão, W.S., and Polito, P.S. (2022). The 2019 Northeast Brazil oil spill: scenarios. Annals of the Brazilian Academy of Sciences 94, e20210391. https://doi.org/10.1590/0001-3765202220210391
  • Norman, R.S., Moeller, P., McDonald, T.J., and Morris, P.J. (2004). Effect of pyocyanin on a crude-oil-degrading microbial community. Applied & Environmental Microbiology 70, 4004-4011. https://doi.org/10.1128/AEM.70.7.4004-4011.2004
  • Nowak, A., and Mrozik A. (2016). Facilitation of co-metabolic transformation and degradation of monochlorophenols by Pseudomonas sp. CF600 and changes in its fatty acid composition. Water, Air & Soil Pollution 227, 83. https://doi.org/0.1007/s11270-016-2775-5.
  • Ojewumi, M.E., Okeniyi, J.O., Ikotun, J.O., Okeniyi, E.T., Ejemen, V.A., and Popoola, A.P.I. (2018). Bioremediation: Data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data Brief 19, 101-113. https://doi.org/10.1016/j.dib.2018.04.102
  • Oliveira, B.T.M., Lima, K.Y.G., Arruda, R.R.A., Vasconcelos, U. (2021). Distinct stress responses to pyocyanin by planktonic and sessile Staphylococcus aureus UFPEDA 02 and Escherichia coli UFPEDA 224. Brazilian Journal of Development 7, 98074-98088. https://doi.org/ 10.34117/bjdv7n10-227
  • Oliveira, O.M.C., Queiroz, A.F.S., Cerqueira, J.R., Soares, S.A.R., Garcia, K.S., Pavani Filho, A., Rosa, M.L.S., Suzart, C.M., Pinheiro, L.L., and Moreira, I.T.A. (2020). Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin 160, 11157.i: 10.1016/j.marpolbul.2020.111597
  • Özcan, D., and Kahraman, H. (2015). Pyocyanin production in the presence of calcium ion in Pseudomonas aeruginosa and recombinant bacteria. Turkish Journal of Science & Technology 10, 13-19.
  • Ozdal, M., Gurkok, S., and Ozdal, O.G. (2019). Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector. Biocatalysis & Agricultural Biotechnology 22, 101365. https://doi.org/10.1016/j.bcab.2019.101365
  • Pena, P.G.L., Northcross, A.L., Lima, M.A.G., and Rêgo, R.C.F. (2020). The crude oil spill on the Brazilian coast in 2019: the question of public health emergency. Reports in Public Health 36, e00231019. https://doi.org/10.1590/0102-311X00231019
  • Radwan, S.S., Al-Mailem, D.M., and Kansour M.K. (2019). Bioaugmentation failed to enhance oil bioremediation in three soil samples from three different continents. Science Reports 9, 19508. https://doi.org/10.1038/s41598-019-56099-2
  • Ramdass, A.C., Rampersad, S.N. (2023). Genome features of a novel hydrocarbonoclastic Chryseobacterium oranimense strain and its comparison to bacteria oil-degrades and to other C. oranimense strains. DNA Research 30, dsad025. https://doi.org/10.1093/dnares/dsad025
  • Salam, L.B., Obayori, O.S., Akashoro, O.S., and Okogie, G.O. (2011). Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. International Journal of Agriculture & Biology 13, 245-250. https://doi.org/10–416/MBY/2011/13–2–245–250
  • Sarkar, J, Kazy, SK, Gupta, A, Dutta, A, Mohapatra, B, Roy, A, Bera, P, Mitra, A, and Sar, P. (2016). Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Frontiers in Microbiology 7, 1407. https://doi.org/10.3389/fmicb.2016.01407
  • Sawulski, P., Boots, B., Clipson, N., and Doyle, E. (2015). Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Letters in Applied Microbiology 61, 199-207. https://doi.org/10.1111/lam.12446
  • Shekhar, S.K., Godheja, J., and Modi, D.R. (2014). Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. International Journal of Current Microbiology & Applied Sciences 4, 892-905.
  • Silva, E.S., Pragana, L.G., and Vasconcelos U. (2021). Photooxidation vs biodegradation: A short review on fate of heavy hydrocarbons after oil spill in sea water. International Journal of Engineering Research & Applications 11, 8-17.
  • Silva, I.S., Santos, E.C., Menezes, C.R., Faria, A.F., Franciscon, E., Grossman, M., and Durrant, L.R. (2009). Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology 100, 4669-4675. https://doi.org/10.1016/j.biortech.2009.03.079
  • Sporer, A.J., Beierschmitt, C., Bendebury, A., Zink, K.E., Price-Whelan, A., Buzzeo, M.C., Sanchez, L.M., and Dietrich, L.E.P. (2018). Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Microbiology 164, 790-800. https://doi.org/10.1099/mic.0.000657
  • Sundaram, S., Das, M.T., and Thakur, I.S. (2013). Biodegradation of cypermethrin by Bacillus sp. in soil microcosm and in-vitro toxicity evaluation on human cell line. International Biodeterioration & Biodegradation 77, 39-44. https://doi.org/10.1016/j.ibiod.2012.11.008
  • Suwardi, A., Ratnaningsih, R., and Rinanti, A. (2021). Bioremediation of petroleum hydrocarbon by mixed bacteria culture of Pseudomonas aeruginosa and Brevibacterium sp. IOP Conference Series: Materials Science & Engineering, Volume 1098, Environmental Engineering 1098, 052036. https://doi.org/ 10.1088/1757-899X/1098/5/052036
  • Teramoto, M., Queck, S.Y., and Ohnishi, K. (2013). Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the Strait of Malacca. Plos One 8, e66594. https://doi.org/10.1371/journal.pone.0066594
  • Unglaube, F., Hünemörder, P., Guo, X., Chen, Z., Wang, D., and Mejía, E. (2020). Phenazine radical cations as efficient homogeneous and heterogeneous catalysts for the cross-dehydrogenative aza-henry reaction. Helvetica 103, e2000184. https://doi.org/10.1002/hlca.202000184
  • USEPA. (1993). Method 351.2 – Determination of total Kjeldahl nitrogen by semi-automatic colorimetric. U.S. Government Printing Office, Washington, USA.
  • USEPA. (1978). Method 365.3 – Phosphorus, all forms (colorimetric, ascorbic acid, two reagents). U.S. Government Printing Office, Washington, USA.
  • USEPA. (1996). Method 8015 – Nonhalogenated Organics by Gas Chromatography/Flame Ionization Detector. U.S. Government Printing Office, Washington, USA.
  • USEPA. (1996). Method 8270 – Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry. U.S. Government Printing Office, Washington, USA.
  • USEPA. (1996). Method 9060 – Total Organic Carbon. U.S. Government Printing Office, Washington, USA.
  • Vasconcelos, U., Oliveira, F.J.S., and França F.P. (2013). Raw glycerol as cosubstrate on the PHAs biodegradation in soil. Canadian Journal of Pure & Applied Sciences 7, 2203-2209.
  • Vasudevan, N., and Rajaram, P. (2001). Bioremediation of oil sludge-contaminated soil. Environment International 26, 409-411. https://doi.org/10.1016/s0160-4120(01)00020-4
  • Viana, A.A.G., Martins, R.X., Ferreira, G.F., Zenaide-Neto, H., Amaral, I.P.G., Vasconcelos, U. (2017). Pseudomonas aeruginosa and pyocyanin negatively act on the establishment of Enterobacteriaceae biofilm on a ceramic surface. International Journal of Engineering Research and Application 7, 23-30. https://doi.org/ 10.9790/9622-0708022330
  • Viana, A.A.G., Oliveira, B.T.M., Cavalcanti, T.G., Sousa, K.A., Mendonça, E.A.M., Amaral, I.P.G., and Vasconcelos, U. (2018). Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa. International Journal of Advanced Engineering Research & Science 5, 212-223.
  • Wang, O., and Coates, J.D. (2017). Biotechnological applications of microbial (per)chlorate reduction. Microorganisms 5, 76. https://doi.org/10.3390/microorganisms5040076
  • Woźniak-Karczewska, M., Lisiecki, P., Białas, W., Owsianiak, M., Piotrowska-Cyplik, A., Wolko, Ł., Ławniczak, Ł., Heipieper, H.J., Gutierrez, T., and Chrzanowski, Ł. (2019). Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment 671, 948-958. https://doi.org/10.1016/j.scitotenv.2019.03.431
  • Wu, C-H., Yet-Pole, I., Yu-Hsuan, C., and Ln, C-W. (2014). Enhancement of power generation by toluene biodegradation in a microbial fuel cell in the presence of pyocyanin. Journal of the Taiwan Institute of Chemical Engineers 45, 2319-2324. https://doi.org/10.1016/j.jtice.2014.05.019
  • Wu, M., Wu, J., Zhang, X., and Ye, X. (2019). Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere 237, 124456. https://doi.org/10.1016/j.chemosphere.2019.124456
  • Yamaki, A., and Muratsubaki, H. (2012). Phenazine methosulfate decreases HIF-1α accumulation during the exposure of cells to hypoxia. Bioscence, Biotechnology & Biochemistry 76, 1682-1687. https://doi.org/10.1271/bbb.120236
  • Zacharias, D.C., Gama, C.M., and Fornaro, A. (2021). Mysterious oil spill on Brazilian coast: Analysis and estimates. Marine Pollution Bulletin 165, 112125. https://doi.org/10.1016/j.marpolbul.2021.112125
  • Zhang, Z., and Lo, I.M.C. (2015). Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Environmental Biotechnology 99, 5683-5696. https://doi.org/10.1007/s00253-015-6420-9
  • Zhao, F., Li, P., Guo, C., Shi, R-J., and Zhang, Y. (2018). Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection. Bioresource Technology 251, 295-302. https://doi.org/10.1016/j.biortech.2017.12.057
  • Zhu, Q., Pan, K., Liu, H., Hu, J., Li, Q., Bai, X., Zhang, M., Qiu, J., and Hong, K. (2023). Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. Journal of Hazardous Materials 458, 131924. https://doi.org/10.1016/j.jhazardmat.2023.13124
  • Zhu, X., Chen, M., He, X., Xiao, Z., Zhou, H., and Tan, Z. (2015). Bioaugmentation treatment of PV wafer manufacturing wastewater by microbial culture. Water Science & Technology 72, 754-761. https://doi.org/10.2166/wst.2015.273