Vol. 23, No. 3 (2024), Poly24303 https://doi.org/10.24275/rmiq/Poly24303


Increase in the degree of substitution of cassava starches by dual modification processes


 

Authors

G.M. Suárez-Castillo, J.G. Salcedo-Guadalupe, K.P. Contreras-Lozano, M.G. Rangel-Pérez, M.A. Cervera-Ricardo, J.A. Figueroa-Flórez


Abstract

The dense packing of cassava starch determined by a semi-crystalline structure is responsible for obtaining low degrees of substitution in the acetylation processes. The present study evaluated the effect of dual modifications combining physical and chemical treatments on the degree of substitution (DS), structural, morphological, pasting and gelatinization properties of cassava starches. Four physical treatments such as annealing (ANN), heat- moisture (HMT), ultrasound (UTS) and homogenization (HMG) were used to subsequently perform the chemical modification of acetylation with acetic anhydride for each treatment. The modification was confirmed by infrared spectroscopy with the presence of the carboxyl group (C=O) characteristic of starch acetates. The modified starches did not change the type-A crystalline pattern, however, they presented decreases in the intensities of the peaks, relative crystallinity, as well as greater stability upon heating and less retrogradation. In conclusion, the dual physicochemical modification is an alternative to increase the efficiency of the chemical reaction, decreasing the use of chemical agents and increasing the GS achieved, which enables its application in the biofilm industry.


Keywords

Physical treatments, starch acetates, crystallinity, dual modification, morphology.


References

  • Aaliya, B., Sunooj, K. V., Navaf, M., Akhila, P. P., Sudheesh, C., Sabu, S., Sasidharan, A., Mir, S. A., George, J., & Khaneghah, A. M. (2021). Effect of low dose γ-irradiation on the structural and functional properties, and in vitro digestibility of ultrasonicated stem starch from Corypha umbraculifera L. Applied Food Research, 1(2), 100013. https://doi.org/10.1016/j.afres.2021.100013
  • Abedi, E., Pourmohammadi, K., & Abbasi, S. (2019). Dual-frequency ultrasound for ultrasonic-assisted esterification. Food Science and Nutrition, 7(8), 2613–2624. https://doi.org/10.1002/fsn3.1115
  • Adebowale, K. O., Henle, T., Schwarzenbolz, U., & Doert, T. (2009). Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing. Food Hydrocolloids, 23(7), 1947–1957. https://doi.org/10.1016/j.foodhyd.2009.01.002
  • Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Brazil), 35(2), 215–236. https://doi.org/10.1590/1678-457X.6749
  • Amini, A. M., Razavi, S. M. A., & Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers, 122, 282–292. https://doi.org/10.1016/j.carbpol.2015.01.020
  • Arroyo-Dagobeth, E. D., Figueroa-Flórez, J. A., Cardena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G., & Cervera-Ricardo, M. A. (2023). Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana, 41(2), 1–7. https://doi.org/10.15446/agron.colomb.v41n3.110111
  • Ashogbon, A. O. (2017). Contradictions in the study of some compositional and physicochemical properties of starches from various botanical sources. Starch, 1–14. https://doi.org/10.1002/star.201600372
  • Bartz, J., Goebel, J. T., Giovanaz, M. A., Zavareze, E. D. R., Schirmer, M. A., & Dias, A. R. G. (2015). Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis. Food Chemistry, 178, 236–242. https://doi.org/10.1016/j.foodchem.2015.01.095
  • Bello-Pérez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., & Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch, 43(9), 1434–1440. https://doi.org/10.1016/j.lwt.2010.04.003
  • Betancur, A. D., Chel, G. L., & Can, E. (1997). Acetylation and Characterization of Canavalia ensiformis Starch. 8561(96), 378–382.
  • Cham, S., & Suwannaporn, P. (2010). Effect of hydrothermal treatment of rice flour on various rice noodles quality. Journal of Cereal Science, 51(3), 284–291. https://doi.org/10.1016/j.jcs.2010.01.002
  • Chen, Z., Schols, H. A., & Voragen, A. G. J. (2004). Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose populations. Carbohydrate Polymers, 56(2), 219–226. https://doi.org/10.1016/j.carbpol.2004.02.004
  • Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018
  • Colussi, R., Pinto, V. Z., El Halal, S. L. M., Biduski, B., Prietto, L., Castilhos, D. D., Zavareze, E. da R., & Dias, A. R. G. (2017). Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chemistry, 221, 1614–1620. https://doi.org/10.1016/j.foodchem.2016.10.129
  • Cuenca, P., Ferrero, S., & Albani, O. (2020). Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocolloids, 100, 105430. https://doi.org/10.1016/j.foodhyd.2019.105430
  • Cuenca, P., Ramallo, L. A., & Albani, O. A. (2020). Películas y materiales compuestos basados en almidón de mandioca acetilado de alto grado de sustitución. Revista de Ciencia y Tecnología, 33, 85–93. https://doi.org/10.36995/j.recyt.2020.33.011
  • Cui, C., Ji, N., Wang, Y., Xiong, L., & Sun, Q. (2021). Bioactive and intelligent starch-based films: A review. Trends in Food Science & Technology, 116(2021), 854–869. https://doi.org/10.1016/j.tifs.2021.08.024
  • Dar, M. Z., Deepika, K., Jan, K., Swer, T. L., Kumar, P., Verma, R., Verma, K., Prakash, K. S., Jan, S., & Bashir, K. (2018). Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation. International Journal of Biological Macromolecules, 108, 1348–1356. https://doi.org/10.1016/j.ijbiomac.2017.11.067
  • Figueroa-Flórez, J. (2020). Procesos de biocátalisis enzimática en almidones nativos y pre-gelatinizados de yuca: Efectos a nivel morfológico, molecular y de digestibilidad in vitro. 138. https://repositorio.unal.edu.co/handle/unal/79620
  • Figueroa-Flórez, Jorge A., Cadena-Chamorro, E. M., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. J. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA (Colombia), 86(208), 162–170. https://doi.org/10.15446/dyna.v86n208.72976
  • Figueroa-Flórez, Jorge A., Salcedo-Mendoza, J. G., & Rodríguez-Lora, M. C. (2016). Acetilación de almidón nativo de batata (Ipomeas batata L). Vitae, 23, S174–S179.
  • Figueroa-Flórez, Jorge Antonio, Arroyo-Dagobeth, E. D., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G., & Ciro-Velásquez, H. J. (2023). Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomia Colombiana, 41(1), 1–11. https://doi.org/10.15446/agron.colomb.v41n1.105089
  • Gagneten, M., Cáceres, S. G., Rodríguez Osuna, I. A., Olaiz, N. M., Schebor, C., & Leiva, G. E. (2023). Modification of cassava starch by acetylation and pulsed electric field technology: Analysis of physical and functional properties. Innovative Food Science and Emerging Technologies, 85(2023), 1–9. https://doi.org/10.1016/j.ifset.2023.103344
  • Gutiérrez, T. J., & Alvarez, V. A. (2018). Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids, 77, 407–420. https://doi.org/10.1016/j.foodhyd.2017.10.017
  • Hong, J., Chen, R., Zeng, X. A., & Han, Z. (2016). Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch. Food Chemistry, 192, 15–24. https://doi.org/10.1016/j.foodchem.2015.06.058
  • Hong, J., Zeng, X.-A., Buckow, R., Han, Z., & Wang, M. sheng. (2016). Nanostructure, morphology and functionality of cassava starch after pulsed electric fields assisted acetylation. Food Hydrocolloids, 54, 139–150. https://doi.org/10.1016/j.foodhyd.2015.09.025
  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymers, 45(3), 253–267. https://doi.org/10.1016/S0144-8617(00)00260-5
  • Hoover, R. (2009). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203–210. https://doi.org/10.1016/j.ijbiomac.2008.12.007
  • Hoover, R. (2010). The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition, 50(9), 835–847. https://doi.org/10.1080/10408390903001735
  • Javadian, N., Mohammadi Nafchi, A., & Bolandi, M. (2021). The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Science and Nutrition, 9(10), 5467–5476. https://doi.org/10.1002/fsn3.2506
  • Jin, S., Moo, Y., & Baik, Y. (2023). Characteristics of physically modified starches. Food Science and Biotechnology, 32(7), 875–883. https://doi.org/10.1007/s10068-023-01284-3
  • Khurshida, S., Das, M. J., Deka, S. C., & Sit, N. (2021). Effect of dual modification sequence on physicochemical, pasting, rheological and digestibility properties of cassava starch modified by acetic acid and ultrasound. International Journal of Biological Macromolecules, 188(2021), 649–656. https://doi.org/10.1016/j.ijbiomac.2021.08.062
  • Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918. https://doi.org/10.1021/jf011652p
  • Kumar, A., Singh, K., Kaur, M., & Kaur, V. (2019). International Journal of Biological Macromolecules Physicochemical , rheological , morphological and in vitro digestibility properties of pearl millet starch modi fi ed at varying levels of acetylation. International Journal of Biological Macromolecules, 131, 1077–1083. https://doi.org/10.1016/j.ijbiomac.2019.03.179
  • Lawal, M. V, Odeniyi, M. A., & Itiola, O. A. (2015). Material and rheological properties of native , acetylated , and pregelatinized forms of corn , cassava , and sweet potato starches. Starch/Stärke, 67(11–12), 964–975. https://doi.org/10.1002/star.201500044
  • Li, P., He, X., Dhital, S., Zhang, B., & Huang, Q. (2017). Structural and physicochemical properties of granular starches after treatment with debranching enzyme. Carbohydrate Polymers, 169, 351–356. https://doi.org/10.1016/j.carbpol.2017.04.036
  • Li, Y., Liu, S., Liu, X., Tang, X., & Zhang, J. (2017). The Impact of Heat-Moisture Treatment on Physicochemical Properties and Retrogradation Behavior of Sweet Potato Starch. International Journal of Food Engineering, 13(5). https://doi.org/10.1515/IJFE-2017-0001
  • Majzoobi, M., Pesaran, Y., Mesbahi, G., & Farahnaky, A. (2016). Evaluation of the Effects of Hydrothermal Treatment on Rice Flour and Its Related Starch. International Journal of Food Properties, 19(9), 2135–2145. https://doi.org/10.1080/10942912.2015.1110165
  • Martens, B. M. J., Gerrits, W. J. J., Bruininx, E. M. A. M., & Schols, H. A. (2018). Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. Journal of Animal Science and Biotechnology, 9(1), 1–13. https://doi.org/10.1186/s40104-018-0303-8
  • Moorthy-Subramony, N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Staerke, 54(12), 559–592. https://doi.org/10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-F
  • Nakazawa, Y., & Wang, Y. (2003). Acid hydrolysis of nati v e and annealed starches and branch-structure of their Naegeli dextrins. Carbohydrate Research 338, 338(24), 2871–2882. https://doi.org/10.1016/j.carres.2003.09.005
  • Ochoa, T. A., García-Almendárez, B. E., Reyes, A. A., Pastrana, D. M. R., López, G. F. G., Belloso, O. M., & González, C. R. (2017). Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials. Food and Bioprocess Technology, 10(1), 103–114. https://doi.org/10.1007/s11947-016-1800-4
  • Odeku, O. A., & Picker-Freyer, K. M. (2007). Analysis of the material and tablet formation properties of four Dioscorea starches. Starch/Staerke, 59(9), 430–444. https://doi.org/10.1002/star.200700619
  • Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Wiens, R. A., Gough, K. M., & Aluko, R. E. (2020). Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocolloids, 100(2019), 105424. https://doi.org/10.1016/j.foodhyd.2019.105424
  • Omodunbi Ashogbon, A. (2021). Dual modification of various starches: Synthesis, properties and applications. Food Chemistry, 342(2020), 128325. https://doi.org/10.1016/j.foodchem.2020.128325
  • Osundahunsi, O. F., & Mueller, R. (2011). Functional and dynamic rheological properties of acetylated starches from two cultivars of cassava. Starch/Staerke, 63(1), 3–10. https://doi.org/10.1002/star.201000076
  • Otache, M. A., Duru, R. U., Achugasim, O., & Abayeh, O. J. (2021). Advances in the Modification of Starch via Esterification for Enhanced Properties. Journal of Polymers and the Environment, 29(5), 1365–1379. https://doi.org/10.1007/s10924-020-02006-0
  • Palavecino, P. M., Penci, M. C., & Ribotta, P. D. (2019). Impact of chemical modifications in pilot-scale isolated sorghum starch and commercial cassava starch. International Journal of Biological Macromolecules, 135, 521–529. https://doi.org/10.1016/j.ijbiomac.2019.05.202
  • Paraginski, R. T., Ziegler, V., Ferreira, C. D., Colussi, R., Gutkoski, L. C., Da, E., Zavareze, R., & Elias, M. C. (2016). Properties of popcorn starch expanded in a microwave , with and without the presence of vegetable oil. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13142
  • Ramos-Villacob, V., Figueroa-Flórez, J. A., Salcedo-Mendoza, J. G., Hernandez-Ruydíaz, J. E., & Romero-Verbe, L. A. (2023). Development of modified cassava starches by ultrasound-assisted amylose/lauric acid complex formation Desarrollo. Revista Mexicana de Ingeniería Química Development, 23, 97–104. https://doi.org/10.24275/rmiq/Alim24109 ISSN:1665-2738.
  • Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024
  • Salcedo-Mendoza, J., Rodríguez-Lora, M. C., & Figueroa-Florez, J. (2016). Effect of acetylation on structural and functional properties of starches from cassava (manihot esculenta crantz) and yam (dioscorea alata cv. diamante 22). Revista Mexicana de Ingeniería Química, 15(3), 787–796. https://www.redalyc.org/pdf/620/62048168010.pdf
  • Salcedo, J., & Contreras, K. (2017). Agroindustria de productos amiláceos I : Yuca ( Manihot esculenta Crantz ) y ñame ( Dioscorea spp .) Editorial Universidad de Sucre, Colombia 
  • Schafranski, K., Ito, V. C., & Lacerda, L. G. (2021). Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocolloids, 117(2020), 106690. https://doi.org/10.1016/j.foodhyd.2021.106690
  • Salgado-Delgado, A. M., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J. P., Olarte-Paredes, A., & Granados-Baeza, M. J. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana de Ingeniería Química, 21(3), 1–12. https://doi.org/10.24275/rmiq/Alim2802
  • Serna-Fadul, T. (2022). Desarrollo de una premezcla en polvo para pandebono con incorporación de harina modificada de yuca (Manihot esculenta) y componentes bioactivos de harina nativa de ahuyama (Cucurbita spp.). Tesis de Maestría en Ingeniería Agroindustrial, Universidad nacional de Colombia, Colombia.
  • Shivaraju, V. K., Vallayil Appukuttan, S., & Sunny Kumar, S. K. (2018). The Influence of Bound Water on the FTIR Characteristics of Starch and Starch Nanocrystals Obtained from Selected Natural Sources. Starch/Staerke, 71(5–6), 1–32. https://doi.org/10.1002/star.201700026
  • Sindhu, R., Devi, A., & Khatkar, B. S. (2021). Morphology, structure and functionality of acetylated, oxidized and heat moisture treated amaranth starches. Food Hydrocolloids, 118(2020), 106800. https://doi.org/10.1016/j.foodhyd.2021.106800
  • Singh N, Chawla D, Singh J. (2003). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 86(4), 601–8. https://doi.org/10.1016/j.foodchem.2003.10.008.
  • Sodhi NS, Singh N. Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering. 70(1):117–27 https://doi.org/10.1016/j.jfoodeng.2004.09.018.
  • Subroto, E., Mahani, Indiarto, R., Yarlina, V. P., & Izzati, A. N. (2022). A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers, 14(24). https://doi.org/10.3390/polym14245447
  • Toae, R., Sriroth, K., Rojanaridpiched, C., Vichukit, V., Chotineeranat, S., Wansuksri, R., Chatakanonda, P., & Piyachomkwan, K. (2019). Outstanding Characteristics of Thai Non-GM Bred Cassava Starch , Waxy Cereal Starches and Stabilized. Plants, 8, 447. https://doi.org/10.3390/plants8110447
  • Trela, V. D., Ramallo, A. L., & Albani, O. A. (2020). Synthesis and characterization of acetylated cassava starch with different degrees of substitution. Brazilian Archives of Biology and Technology, 63, 1–13. https://doi.org/10.1590/1678-4324-2020180292
  • Tupa, M., Maldonado, L., Vázquez, A., & Foresti, M. L. (2013). Simple organocatalytic route for the synthesis of starch esters. Carbohydrate Polymers, 98(1), 349–357. https://doi.org/10.1016/j.carbpol.2013.05.094
  • Van Soest, J. J. G., & Vliegenthart, J. F. G. (1997). Crystallinity in starch plastics: Consequences for material properties. Trends in Biotechnology, 15(6), 208–213. https://doi.org/10.1016/S0167-7799(97)01021-4
  • Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
  • Wang, Z., Mhaske, P., Farahnaky, A., Kasapis, S., & Majzoobi, M. (2022). Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids, 129(2021), 107542. https://doi.org/10.1016/j.foodhyd.2022.107542
  • Yang, Q. Y., Lu, X. X., Chen, Y. Z., Luo, Z. G., & Xiao, Z. G. (2019). Fine structure, crystalline and physicochemical properties of waxy corn starch treated by ultrasound irradiation. Ultrasonics Sonochemistry, 51(2018), 350–358. https://doi.org/10.1016/j.ultsonch.2018.09.001
  • Yu, B., Li, J., Tao, H., Zhao, H., Liu, P., & Cui, B. (2021). Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. International Journal of Biological Macromolecules, 176, 177–185. https://doi.org/10.1016/j.ijbiomac.2021.02.064
  • Zdybel, E., Wilczak, A., Kapelko-Żeberska, M., Tomaszewska-Ciosk, E., Gryszkin, A., Gawrońska, A., & Zięba, T. (2021). Physicochemical properties and digestion resistance of acetylated starch obtained from annealed starch. Polymers, 13(23), 1–11. https://doi.org/10.3390/polym13234141
  • Zhang, L., Zuo, B., Wu, P., Wang, Y., & Gao, W. (2012). Ultrasound effects on the acetylation of dioscorea starch isolated from Dioscorea zingiberensis C.H. Wright. Chemical Engineering and Processing: Process Intensification, 54, 29–36. https://doi.org/10.1016/j.cep.2012.01.005
Zhang, Y., Dai, Y., Yu, K., Ding, X., Hou, H., Wang, W., Zhang, H., Li, X., & Dong, H. (2019). Preparation of octenyl succinic anhydride-modified cassava starch by the ultrasonic-assisted method and its influence mechanism. Journal of Food Processing and Preservation, 43(12), 1–13. https://doi.org/10.1111/jfpp.14222