Vol. 24, No. 2 (2025), IA25505 https://doi.org/10.24275/rmiq/IA25505


Enhancement of rheological and filtration properties of water-based drilling fluids through zinc oxide nanoparticles addition


 

Authors

L.C. Rodríguez-López, H. Pérez-Vidal, F.C. Gómez-Torres, C. Martínez-Pacheco, E.E. Uicab-Córdova, S.C. Madrigal-Díaz, L.L. Díaz-Flores


Abstract

Drilling fluids are used in oil well drilling depending on their filtration characteristics and rheological properties. Because of the increase in environmental policies, innovations in water-based drilling fluids (WBDF) have been proposed to convert them into high-performance fluids with stabilizer properties during drilling, avoiding an increase in non-productive time (NPT) and costs. This study proposes the enhancement of WBDF due to the addition of ZnO nanoparticles (ZnO-NPs). After the addition of ZnO-NPs, the results show that the drilling fluid, with a concentration of 0.05 % ZnO-NPs, has improved rheological properties, evaluated at 25, 50, and 70 °C. At room temperature, there is an increase in other parameters such as apparent viscosity (AV) 200 %, the plastic viscosity (PV) 180 %, the yield point (YP) 240 %, compared to the base fluid and furthermore 10-min gel strength elevates by 80 % more. In addition, the amount of filtered fluid reduces from 13.5 to 10.4 mL, even under conditions of 500 psi and 150 °C, there is a 54 % reduction, indicating the formation of a proper filter cake.


Keywords

Filtration control, HPHT conditions, Mechanosynthesis, ZnO nanoparticles, Water-based drilling fluids.


References

  • Abdullah, A. H., Ridha, S., Mohshim, D. F., and Maoinser, M. A. (2024). An experimental investigation into the rheological behavior and filtration loss properties of water-based drilling fluid enhanced with a polyethyleneimine-grafted graphene oxide nanocomposite. RSC Advances 14(15), 10431–10444. https://doi.org/10.1039/D3RA07874D.
  • Abrica G., P., and Gómez A., S. (2022). Effects and characterization of airborne nanoparticles (CuO, ZnO-NPs) in plants. Revista Internacional de Contaminacion Ambiental 38, 145–164. https://doi.org/10.20937/RICA.54303.
  • Admin. Resistencia de gel. (2022) Available at: Https://Blog.Industriasmorven.Com/Resistencia-de-Gel/. Accessed: November 15, 2023.
  • Aghdam, S. B., Moslemizadeh, A., Kowsari, E., and Asghari, N. (2020). Synthesis and performance evaluation of a novel polymeric fluid loss controller in water-based drilling fluids: High-temperature and high-salinity conditions. Journal of Natural Gas Science and Engineering 83, 103576. https://doi.org/10.1016/j.jngse.2020.103576.
  • Ahasan, M. H., Alahi Alvi, M. F., Ahmed, N. and Alam, M. S. (2022). An investigation of the effects of synthesized zinc oxide nanoparticles on the properties of water-based drilling fluid. Petroleum Research 7(1), 131–137. https://doi.org/10.1016/j.ptlrs.2021.08.003.
  • Ahmad, H. M., Iqbal, T., A. Al Harthi, M. and Kamal, M. S. (2021). Synergistic effect of polymer and nanoparticles on shale hydration and swelling performance of drilling fluids. Journal of Petroleum Science and Engineering 205. https://doi.org/10.1016/j.petrol.2021.108763.
  • Ahmed, N., Alam, M. S. and Salam, M. A. (2020). Experimental analysis of drilling fluid prepared by mixing iron (III) oxide nanoparticles with a KCl–Glycol–PHPA polymer-based mud used in drilling operation. Journal of Petroleum Exploration and Production Technology 10(8), 3389–3397. https://doi.org/10.1007/s13202-020-00933-1.
  • Ali, J. A., Abbas, D. Y., Abdalqadir, M., Nevecna, T., Jaf, P. T., Abdullah, A. D. and Rancová, A. (2024). Evaluation the effect of wheat nano-biopolymers on the rheological and filtration properties of the drilling fluid: Towards sustainable drilling process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 683. https://doi.org/10.1016/j.colsurfa.2023.133001.
  • Al-Zubaidi, N. S., Alwasiti, A. A. and Mahmood, D. (2017). A comparison of nano bentonite and some nano chemical additives to improve drilling fluid using local clay and commercial bentonites. Egyptian Journal of Petroleum 26(3), 811–818. https://doi.org/10.1016/j.ejpe.2016.10.015.
  • API. (2019). API RP 13B-1 manual de práctica recomendada para pruebas de campo de fluidos de perforación a base de agua. Edicion 5.
  • Aquino, P., Osorio, A. M., Ninán, E., and Torres, F. (2018). Characterization of ZnO nanoparticles synthesized by precipitation method and its evaluation in the incorporation in enamel paints. Rev Soc Quím Perú 84(1).
  • Arenas Gaviria, J. A. (2024). Análisis de las propiedades fisicoquímicas y reológicas que afectan la sedimentación de suspensiones minerales en espesadores en la industria del cemento. Universidad Nacional de Colombia.
  • Baik, M. H. and Lee, S. Y. (2010). Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength. Journal of Industrial and Engineering Chemistry 16(5), 837–841. https://doi.org/10.1016/j.jiec.2010.05.002.
  • Barry, M. M., Jung, Y., Lee, J. K., Phuoc, T. X. and Chyu, M. K. (2015). Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. Journal of Petroleum Science and Engineering 127, 338–346. https://doi.org/10.1016/j.petrol.2015.01.012.
  • Bayat, A. E. and Shams, R. (2019). Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds. Colloids and Surfaces A: Physicochemical and Engineering Aspects 581. https://doi.org/10.1016/j.colsurfa.2019.123792.
  • Beg, M., Kumar, P., Choudhary, P., and Sharma, S. (2020). Effect of high temperature ageing on TiO2 nanoparticles enhanced drilling fluids: A rheological and filtration study. Upstream Oil and Gas Technology 5, 100019. https://doi.org/10.1016/j.upstre.2020.100019.
  • Blkoor, S. O., Ismail, I., Oseh, J. O., Selleyitoreea, S., Norddin, M. N. A. M., Agi, A. and Gbadamosi, A. O. (2021). Influence of polypropylene beads and sodium carbonate treated nanosilica in water-based muds for cuttings transport. Journal of Petroleum Science and Engineering 200. https://doi.org/10.1016/j.petrol.2021.108435.
  • Bolarinwa, H. S., Onuu, M. U., Fasasi, A. Y., Alayande, S. O., Animasahun, L. O., Abdulsalami, I. O., Fadodun, O. G. and Egunjobi, I. A. (2017). Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. Journal of Taibah University for Science 11(6), 1245–1258. https://doi.org/10.1016/j.jtusci.2017.01.004.
  • Cardenas A., W. (2022). Effect of the addition of ZnO and SiO2 nanoparticles on the rheological properties of a water-based drilling fluid. Degree thesis to obtain the title of Chemist. Universidad industrial de Santander. https://noesis.uis.edu.co/items/0f8b9e94-98b0-442a-9aff-ea275eefdf56.
  • Chuck H., C., Pérez C., E., Heredia O., E., and Serna S., S. O. (2011). Sorghum as a multifaceted crop for bioethanol production in Mexico: technologies, advances, and areas of opportunity. Revista Mexicana de Ingeniería Química 10 (3).
  • Darley, H. C. and Gray, G. R. (1988). Composition and Properties of Drilling and Completion Fluids (Fifth Edition). Gulf Professional Publishing.
  • Dejtaradon, P., Hamidi, H., Chuks, M. H., Wilkinson, D. and Rafati, R. (2019). Impact of ZnO and CuO nanoparticles on the rheological and filtration properties of water-based drilling fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 570, 354–367. https://doi.org/10.1016/j.colsurfa.2019.03.050.
  • Duan, F., Kwek, D. and Crivoi, A. (2011). Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Research Letters 6(1).  https://doi.org/10.1186/1556-276X-6-248.
  • Duan, Y., Dong, X., Yang, H., Fan, Y., Ma, X. and Lin, W. (2024). Study of solid-liquid two-phase flow model of drilling fluids for analyzing mud cake formation. Geoenergy Science and Engineering 236, 212761. https://doi.org/10.1016/j.geoen.2024.212761.
  • Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. In Food and Bioprocess Technology (Vol. 5, Issue 5, pp. 1447–1464). https://doi.org/10.1007/s11947-012-0797-6.
  • Faisal, R., Kamal, I., Salih, N. and Préat, A. (2024). Optimum formulation design and properties of drilling fluids incorporated with green uncoated and polymer-coated magnetite nanoparticles. Arabian Journal of Chemistry 17(2). https://doi.org/10.1016/j.arabjc.2023.105492.
  • Friedheim, J., Young, S., De Stefano, G., Lee, J., Guo, Q. and Swaco, M.-I. (2012). Nanotechnology for Oilfield Applications-Hype or Reality?. Society of Petroleum Engineers 157032.
  • García M., R., Suárez V., G. G., Pech R., W. J., Ordóñez, L. C., Melendez G., P. C., Sánchez P., N. M., and González Q., D. (2024). Soft chemistry synthesis of size-controlled ZnO nanostructures as photoanode for dye-sensitized solar cell. Revista Mexicana de Ingeniera Quimica 23(2). https://doi.org/10.24275/rmiq/IE24235
  • Ghayedi, A. and Khosravi, A. (2020). Laboratory investigation of the effect of GO-ZnO nanocomposite on drilling fluid properties and its potential on H2S removal in oil reservoirs. Journal of Petroleum Science and Engineering 184. https://doi.org/10.1016/j.petrol.2019.106684.
  • Guan, O. S., Gholami, R., Raza, A., Rabiei, M., Fakhari, N., Rasouli, V. and Nabinezhad, O. (2020). A nano-particle based approach to improve filtration control of water based muds under high pressure high temperature conditions. Petroleum 6(1), 43–52. https://doi.org/10.1016/j.petlm.2018.10.006.
  • Gudarzifar, H., Sabbaghi, S., Rezvani, A. and Saboori R. (2020). Experimental investigation of rheological & filtration properties and thermal conductivity of water-based drilling fluid enhanced. Powder Technology 368, 323–341. https://doi.org/10.1016/j.powtec.2020.04.049.
  • Hyne, N. J. (2014). Diccionario de exploración, perforación y producción de petróleo (2nd ed.). PennWell.
  • Li, S., Ng, Y. H., Lau, H. C., Torsæter, O., and Stubbs, L. P. (2020). Experimental investigation of stability of silica nanoparticles at reservoir conditions for enhanced oil-recovery applications. Nanomaterials 10(8), 1–15. https://doi.org/10.3390/nano10081522.
  • Lysakova, E. I., Skorobogatova, A. D., Neverov, A. L., Pryazhnikov, M. I., Rudyak, V. Ya. and Minakov, A. V. (2024). Physico-chemical studies and development of water-based drilling fluid formulations with carbon nanotube additives. Journal of Molecular Liquids, 125448. https://doi.org/10.1016/j.molliq.2024.125448.
  • Lysakova, E. I., Skorobogatova, A. D., Neverov, A. L., and Minakov, A. V. (2025). Investigation of the effect of spherical nanoparticle additives on the properties of drilling fluids modified by carbon nanotubes. Nano-Structures & Nano-Objects 41, 101442. https://doi.org/10.1016/j.nanoso.2025.101442.
  • Ma, L., Yin, D., Ren, J., Han, B. and Qin, S. (2024). A novel thixotropic structural dynamics model of water-based drilling fluids. Geoenergy Science and Engineering 234, 212585. https://doi.org/10.1016/j.geoen.2023.212585.
  • Macías C., K., Ballesteros R., L. T., Velázquez V., V. W., Frías M., D. M., López G., R., and Alvarez L., M. A. (2024). Effect of chitosan on the electrokinetic, spectroscopic, and textural properties of TiO2 nanoparticles. Revista Mexicana de Ingeniera Quimica 23(1). https://doi.org/10.24275/rmiq/Poly24218
  • Martin, C., Nourian, A., Babaie, M. and Nasr, G. G. (2024). Innovative drilling fluid containing sand grafted with a cationic surfactant capable of drilling high pressure and high temperature geothermal and petroleum wells. Geoenergy Science and Engineering 237. https://doi.org/10.1016/j.geoen.2024.212767.
  • Mendoza R., M. A., and Rojas P., K. K. (2021). Nanotechnology applied in water-based drilling fluids to inhibit formation damage. Degree project for the title of petroleum engineer. Fundación Universidad de América. Chrome extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repository.uamerica.edu.co/server/api/core/bitstreams/002f5fc5-12e0-496f-8744-1a15a817d893/content.
  • Nwaezeapu, V. C., Ezenwaka, K. C. and Ede, T. A. (2019). Evaluation of hydrocarbon reserves using integrated petrophysical analysis and seismic interpretation: A case study of TIM field at southwestern offshore Niger Delta oil Province, Nigeria. Egyptian Journal of Petroleum 28(3), 273–280. https://doi.org/10.1016/j.ejpe.2019.06.002.
  • Ofei, T. N., Lund, B. and Saasen, A. (2021). Effect of particle number density on rheological properties and barite sag in oil-based drilling fluids. Journal of Petroleum Science and Engineering 206, 108908. https://doi.org/10.1016/j.petrol.2021.108908.
  • Ovando M., V. M. (2018). Facile synthesis of low band gap ZnO microstructures. Revista Mexicana de Ingeniería Química 17(2), 455–462. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando.
  • Parizad, A., Shahbazi, K. and Tanha, A. A. (2018). SiO2 nanoparticle and KCl salt effects on filtration and thixotropical behavior of polymeric water based drilling fluid: With zeta potential and size analysis. Results in Physics 9, 1656–1665. https://doi.org/10.1016/j.rinp.2018.04.037.
  • Perween, S., Beg, M., Shankar, R., Sharma, S. and Ranjan, A. (2018). Effect of zinc titanate nanoparticles on rheological and filtration properties of water based drilling fluids. Journal of Petroleum Science and Engineering 170, 844–857. https://doi.org/10.1016/j.petrol.2018.07.006.
  • Prieto G., F., Sánchez J., F., Méndez M., M. A., García B., G., and Gordillo M., A. J. (2007). Obtención y caracterización de ferritas ternarias de manganeso por mecanosíntesis. Boletín de La Sociedad Geológica Mexicana 59(1), 125–132. https://doi.org/10.18268/BSGM2007v59n1a10
  • Qi, Q., Zhang, T., Yu, Q., Wang, R., Zeng, Y., Liu, L. and Yang, H. (2008). Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sensors and Actuators, B: Chemical 133(2), 638–643. https://doi.org/10.1016/j.snb.2008.03.035.
  • Rafati, R., Smith, S. R., Sharifi Haddad, A., Novara, R. and Hamidi, H. (2018). Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. In Journal of Petroleum Science and Engineering 161, 61–76. https://doi.org/10.1016/j.petrol.2017.11.067.
  • Ramos, J., Santamaría Osorio, L., Andrés Mendoza Leiva, C., Uribe, W. and Polanco, L. (2013). Almidón modificado de yuca como aditivo en fluidos de perforación base agua. Revista Investigacion.indb 6(1).
  • Reilly, S. I., Vryzas, Z., Kelessidis, V. C. and Gerogiorgis, D. I. (2016). First-principles Rheological Modelling and Parameter Estimation for Nanoparticle-based Smart Drilling Fluids. In Computer Aided Chemical Engineering 38, 1039–1044. https://doi.org/10.1016/B978-0-444-63428-3.50178-8.
  • Sadeghalvaad, M. and Sabbaghi, S. (2015). The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technology 272, 113–119. https://doi.org/10.1016/j.powtec.2014.11.032.
  • Salas, G., Rosas, N., Galeas, S., Guerrero, V., and Debut, A. (2016). Síntesis de Nanopartículas de ZnO por el Método de Pechini. Revista Politécnica 38 (1). https://www.redalyc.org/articulo.oa?id=688773643005.
  • Sapkota, R., Duan, P., Kumar, T., Venkataraman, A., and Papadopoulos, C. (2021). Thin film gas sensors based on planetary ball-milled zinc oxide nanoinks: Effect of milling parameters on sensing performance. Applied Sciences (Switzerland) 11(20). https://doi.org/10.3390/app11209676.
  • Senthilkumaar, S., Rajendran, K., Banerjee, S., Chini, T. K. and Sengodan, V. (2008). Influence of Mn doping on the microstructure and optical property of ZnO. Materials Science in Semiconductor Processing 11(1), 6–12. https://doi.org/10.1016/j.mssp.2008.04.005.
  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. https://doi.org/10.1351/pac198557040603.
  • Sulaimon, A. A., Adeyemi, B. J., and Rahimi, M. (2017). Performance enhancement of selected vegetable oil as base fluid for drilling HPHT formation. Journal of Petroleum Science and Engineering 152, 49–59. https://doi.org/10.1016/j.petrol.2017.02.006.
  • Tichaona Taziwa, R., Leroy Meyer, E., Taziwa Taziwa, R. and Ntozakhe, L. (2017). Structural, Morphological and Raman Scattering Studies of Carbon Doped ZnO Nanoparticles Fabricated by PSP Technique. Journal of Nanoscience and Nanotechnology 1(1). https://www.researchgate.net/publication/321061464.
  • Yi, S., Xu, Y., Cao, Y., Mao, H., He, G., Shi, H., Li, X. and Dong, H. (2024). The decisive role of filtration reducers’ surface charge in affecting drilling fluid filtration performance. Journal of Molecular Liquids 409, 125505. https://doi.org/10.1016/j.molliq.2024.125505.
  • Zargar, R. A., Khan, S. U. D., Khan, M. S., Arora, M. and Hafiz, A. K. (2014). Synthesis and characterization of screen printed Znu thick film for semiconductor device applications. Physics Research International 2014. https://doi.org/10.1155/2014/464809.
  • Zheng, X., Wang, R., Liddle, B., Wen, Y., Lin, L. and Wang, L. (2022). Crude oil footprint in the rapidly changing world and implications from their income and price elasticities. Energy Policy 169, 113204. https://doi.org/10.1016/j.enpol.2022.113204.