Vol. 24, No. 2 (2025), Mat25443 https://doi.org/10.24275/rmiq/Mat25443


Characterization and efficiency of Luffa cylindrica as bioadsorbent in Cr (VI) remotion from synthetic wastewater


 

Authors

J.G. Moreno-Rubio, N.R. Osornio-Rubio, H. Jiménez-Islas, E. Barrera-Calva, A.Y. Ramírez-Yañez, G.M. Martínez-González


Abstract

This study investigated luffa as a bioadsorbent for removing Cr (VI) from synthetic wastewater. Luffa was characterized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), which mainly revealed a composition of carbon and oxygen, as identified via SEM. The morphology showed cylindrical fibers arranged in a network, with diameters ranging from 200 to 300 μm and surface fissures between 25 and 100 μm. FTIR analysis detected hydroxyl, carbonyl, and carboxyl functional groups responsible for adsorbing HCrO₄-1. The composition of luffa was found to be 14% lignin, 76% cellulose, and 10% hemicellulose. Adsorption kinetics were evaluated at pH 2 using 0.5 g of luffa in 100 mL of synthetic wastewater, with Cr (VI) concentrations varying between 15 and 50 ppm. Sampling followed the NMX-AA-044-SCFI-2014 protocol, and Cr (VI) quantification was performed by UV-Vis spectrophotometry, achieving a removal efficiency of 100%. The adsorption kinetics were adjusted to a pseudo-second-order model using parameter estimation. Luffa demonstrated an adsorption capacity of 10.0 mg Cr (VI)/g, with energy-dispersive X-ray spectroscopy (EDS) revealing 1.21% Cr in dry luffa and 48.23% in calcined luffa, indicating Cr incorporation within the luffa structure. X-ray fluorescence (XRF) analysis detected 8.72% Cr in dry luffa and 75.07% in calcined luffa.


Keywords

Cr (VI), Luffa, Bioadsorption Kinetics, Wastewater.


References

  • Adeyanju, C. A., Ogunniyi, S., Ighalo, J. O., Adeniyi, A. G., & Abdulkareem, S. A. (2020). A review on Luffa fibres and their polymer composites. Journal of Materials Science, 56(4), 2797-2813. https://doi.org/10.1007/s10853-020-05432-6
  • Arroyo, I. J., & Cervantes, G. (2018). Huella hídrica de un producto industrial: una metodología (In Spanish). Tecnología y Ciencias del Agua, 9(6), 70-90.  
  • https://doi.org/10.24850/j-tyca-2018-06-03
  • Behera, D., Pattnaik, S. S., Mishra, P. P., Sahu, R., Manna, S., Das, N., Misra, M., Mohanty, A. K., & Behera, A. K. (2024). Fabrication and characterization of industrial biocomposite from cellulosic fibers of Luffa cylindrica in a protein based natural matrix. Industrial Crops and Products, 212, 118328.
  • https://doi.org/10.1016/j.indcrop.2024.118328
  • Diaz-Rodríguez, K. F., Salazar-Pinto, B. M., Flores-Calla, S. S., & Gonzales-Condori, E.G. (2025). Potential use of artichoke (Cynara cardunculus L.) waste packed in filter bags for the removal of hexavalent chromium from water. Revista Mexicana de Ingeniería Química, 24(1), IA25426. https://doi.org/10.24275/rmiq/IA25426
  • Domínguez, J. (2018). Obtención de Materiales carbonosos y furanos a partir de bagazo de agave por carbonización hidrotérmica (Spanish). Tesis de Maestría en Ciencia y Tecnología Ambiental, Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, México.
  • Dupont, L., & Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran.Environmental Science & Technology, 37(18), 4235–4241. https://pubs.acs.org/doi/10.1021/es0342345
  • Gonzales-Condori, E., Avalos-López, G., Mujica-Guzman, A., Terán-Hilares, R., Briceño, G., Quispe-Avilés, J., Parra, P., & Villanueva-Salas, J. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química, 22(3), IA2370.
  •  https://doi.org/10.24275/rmiq/IA2370
  • Hasanzadeha, S., Mortazavi-Derazkolab, S., & Khosravi, R. (2024). Green synthesis of iron nanoparticles using Pistacia-atlantica leaf extract for enhanced removal of Cr (VI) from aqueous solution. Desalination and Water Treatment, 318, 100347.
  • https://doi.org/10.1016/j.dwt.2024.100347
  • Jiménez-González, A., Tec-Caamal, E. N., & Medina-Moreno, S. A. (2024). Biosorption performance evaluation of azo dyes Reactive Red 2 and Reactive Blue 4 on thermally sterilized biomass of Cladosporium tenuissimum fungus. Revista Mexicana de Ingeniería Química, 23(1), IA24161. https://doi.org/10.24275/rmiq/IA24161
  • Khadir, A., Motamedi, M., Pakzad, E., Sillanpää, M., & Mahajan, S. (2020). The prospective utilization of Luffa fibres as a lignocellulosic bio-material for environmental remediation of aqueous media: A review. Journal of Environmental Chemical Engineering9(1), 104691. https://doi.org/10.1016/j.jece.2020.104691
  • Komatani, S., Aoyama, T., Nakazawa, T., & Tsuji, K. (2013). Comparison of SEM-EDS, Micro-XRF and Confocal Micro-XRF for Electric Device Analysis. e-Journal of Surface Science and Nanotechnology11, 133-137.
  • https://doi.org/10.1380/ejssnt.2013.133
  • Krishnani, K., Meng, X., Christodoulatos, C., & Boddu, V. (2007). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153(3), 1222-1234. https://doi.org/10.1016/j.jhazmat.2007.09.113
  • Krishnani, K., Meng, X., & Dupont, L. (2009). Metal ions binding onto lignocellulosic biosorbent. Journal of Environmental Science and Health Part A, 44(7), 688-699.
  • https://doi.org/10.1080/10934520902847810
  • Kuyucak, N., & Volesky, B. (1989). Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 33(7), 809-814. https://doi.org/10.1002/bit.260330703
  • Laidani, Y., Henini, G., Hanini, S., & Fekaouni, A. (2020). Study of the kinetics and thermodynamics of adsorption of hexavalent chromium on the Luffa Cylindrica cords. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 39(4), 137-151. https://doi.org/10.30492/ijcce.2020.39755
  • Leyva-Ramos, R., Flores, J. V, Díaz, P. E., & Berber, M. S. (2008). Adsorción de cromo (VI) en solución acuosa sobre fibra de carbón activado. Información Tecnológica, 19(5), 27-36. https://dx.doi.org/10.4067/S0718-07642008000500005
  • Miretzky, P., & Cirelli, A. F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180(1-3), 1-19. https://doi.org/10.1016/j.jhazmat.2010.04.060
  • NagarajaGanesh, B., & Muralikannan, R. (2016). Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. International Journal of Polymer Analysis and Characterization/IJPAC, 21(3), 259-266.
  •  https://doi.org/10.1080/1023666x.2016.1146849
  • Nwosu‐Obieogu, K., & Okolo, B. I. (2020). Biosorption of chromium (VI) from textile wastewater using luffa cylindrica activated carbon. Environmental Quality Management, 29(4), 23-31. https://doi.org/10.1002/tqem.21687
  • Perry, D. L., Hoi-Ying, & Dale L. (1999). Real-Time characterization of biogeochemical reduction of Cr (VI) on basalt surfaces by SR-FTIR imaging. Geomicrobiology Journal, 16(4), 307-324. https://doi.org/10.1080/014904599270569
  • Rahman, N. N. N. A., Shahadat, M., Won, C. A., & Omar, F. M. (2014). FTIR study and bioadsorption kinetics of bioadsorbent for the analysis of metal pollutants. RSC Advances, 4(102), 58156-58163. https://doi.org/10.1039/c4ra05931j
  • Richard, F. C., & Bourg, A. C. (1991). Aqueous Geochemistry of Chromium: a review. Water Research, 25(7), 807-816. https://doi.org/10.1016/0043-1354(91)90160-r
  • Rubio Campos, B. E., Gamiño Arroyo, Z., Murrieta Escoto, S., Méndez Segoviano, P. A., Ibarra Rivera, B. M., Jiménez Verver y Vargas, P., López Chávez, F. Y., & Álvarez Torres, X. (2022). Remoción de Cromo VI de soluciones acuosas empleando biomasa de residuos de café, JÓVENES EN LA CIENCIA, 16, 1–8
  • https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/3798
  • Secretaría de Economía. (2014). Norma Mexicana NMX-AA-044-SCFI-2014 Análisis de agua. - medición de cromo hexavalente en aguas naturales, salinas, residuales y residuales tratadas-método de prueba (In Spanish). Publicado en el Diario Oficial de la Federación el 13 de enero de 2015, México.
  • www.gob.mx/cms/uploads/attachment/file/166148/nmx-aa-044-scfi-2014.pdf
  • Sahoo, T. R., & Prelot, B. (2020) Adsorption processes for removal of contaminants from wastewater. Nanomaterials for the detection and removal of wastewater pollutants, Chapter 7, 161-222. https://doi.org/10.1016/b978-0-12-818489-9.00007-4
  •  Sun, M., & Hong, L. (2011). Impacts of the pendant functional groups of cellulose precursors on the generation of pore structures of activated carbons. Carbon, 49(7), 2173-2180. https://doi.org/10.1016/j.carbon.2011.01.031
  • Tan, W., Ooi, S., & Lee, C. (1993). Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environmental Technology, 14(3), 277-282.
  • https://doi.org/10.1080/09593339309385290
  • Tanobe, V. O., Sydenstricker, T. H., Munaro, M., & Amico, S. C. (2005). A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa). Polymer Testing, 24(4), 474-482. https://doi.org/10.1016/j.polymertesting.2004.12.004
  • Tejada-Tovar, C., Quiñones-Bolaños, E., Tejeda-Benitez, L., & Marimon-Bolivar, W. (2015). Absorción de cromo hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis). Rev. P+L, 10(1), 9-21.
  • http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-04552015000100002
  • Tejada-Tovar, C., González-Delgado, A., & Villabona-Ortiz, A. (2018). Adsorption kinetics of orange peel biosorbents for Cr (VI) uptake from water. Contemporary Engineering Sciences, 11(24), 1185-1193. https://doi.org/10.12988/ces.2018.83105
  • Tejada-Tovar, C., Herrera-Barros, A., & Villabona-Ortíz, A. (2019). Assessment of chemically modified lignocellulose Waste for the Adsorption of Cr (VI). Revista Facultad de Ingeniería, 29(54), e10298.
  • https://doi.org/10.19053/01211129.v29.n54.2020.10298
  • Vârban, R., Crisan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., & Stefan, R. (2021). Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, Velvet Leaf, Hemp and Jute. Applied Science, 11 (18), 8570.
  • https://doi.org/10.3390/app11188570
  • Vašková, H., & Kolomaznı́k, K. (2016). Spectroscopic measurement of trivalent and hexavalent chromium. 2006 17th International Carpathian Control Conference (ICCC), 775-778. https://doi.org/10.1109/carpathiancc.2016.7501200
  • Wang, X. S., Li, Z. Z., & Tao, S. R. (2008). Removal of chromium (VI) from aqueous solution using walnut hull. Journal of Environmental Management90(2), 721-729. https://doi.org/10.1016/j.jenvman.2008.01.011