Vol. 24, No. 3 (2025), Bio25551 https://doi.org/10.24275/rmiq/Bio25551


Biodegradation potential of thermophilic cellulolytic bacteria isolated from urban organic waste composting


 

Authors

A. Avila-Andrade, R. Beristain-Cardoso, D. García-Mondragón, S. Alcaraz-Ibarra, J.F. Aguirre-Garrido, G. González-Blanco


Abstract

The composting process of urban organic waste presents a microbial diversity depending on the phases of the process, which makes it a source of isolation of thermostable and hydrolytic bacteria of biotechnological importance due to their ability to degrade complex compounds such as cellulose, hemicellulose, and lignin. The objective of this study was to isolate and characterize thermophilic cellulolytic bacteria, as well as to determine their hydrolytic and degradation potential. Microbial isolation was performed from compost samples in the thermophile phase (47°C ± 2.25). Identification was performed by biochemical tests and massive amplicon sequencing. Hydrolytic capacity was determined by hydrolysis halos and kinetic activity in 0.1% CMC medium at 50°C. Bacillus sp. and Bacillus licheniformis strains were isolated from a thermophilic-phase composting system. These strains exhibited specific growth rates of 0.1051 h-1 and 0.0794 h-1, doubling times of 6.5 h and 8.8 h, and hydrolysis halo diameters of 1.08 cm and 0.8 cm, respectively. The identification of bacteria of the Bacillus genus from the composting process highlights its importance as a source of thermophilic bacteria with hydrolytic capacity for biotechnological applications.


Keywords

Isolation, composting, thermophilic, bacilli, cellulose, residue.


References

  • Getahun, T., Nigusie, A., Entele, T., Van Gerven, T., and Van der Bruggen, B. (2012). Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resources, Conservation and Recycling 65, 79-84. https://doi.org/10.1016/j.resconrec.2012.05.007
  • Gouy M., Guindon S., and Gascuel O. (2010) SeaView version 4 : a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2):221-224. https://doi.org/10.1093/molbev/msp259
  • Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., and Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource technology 112, 171-178. https://doi.org/10.1016/j.biortech.2012.02.099
  • Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41, 95-98.
  • Hanlon, G. W. and Hodges, N. A. (1981). Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. Journal of bacteriology 147, 427–431. https://doi.org/10.1128/jb.147.2.427-431.1981
  • Harirchi, S., Sar, T., Ramezani, M., Aliyu, H., Etemadifar, Z., Nojoumi, S. A., Yazdian, F., Awasthi, M. K. and Taherzadeh, M. J. (2022). Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 10, 2355. https://doi.org/10.3390/microorganisms10122355
  • Hasegawa, M., Kishino, H., and Yano, T. (1985). Datinf the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160-174.
  • Hemati, A., Aliasgharzad, N., Khakvar, R., Khoshmanzar, E., Lajayer, B. A. and van Hullebusch, E. D. (2021). Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Management, 119, 122-134. https://doi.org/10.1016/j.wasman.2020.09.042
  • Herrera-Basurto, R., Ramos-López, E., Rodríguez-López, A., González-Olvera, J. C., Morales-Hernández, J., Hurtado-Macías, A., Vergara-Hernández, H. J., and Mercader-Trejo, F. (2024). Study on wild grasses as a potential source of cellulose nanofibers. Revista Mexicana de Ingeniería Química 23(3), 1-12. https://doi.org/10.24275/rmiq/Mat24245
  • Hussian, C. H. A. C., and Leong, W. Y. (2023). Thermostable enzyme research advances: a bibliometric analysis. Journal of Genetic Engineering and Biotechnology  21, 37. https://doi.org/10.1186/s43141-023-00494-w
  • Ince, O., Ozbayram, E. G., Akyol, Ç, Erdem, E. I, Gunel, G., and Ince, B. (2020). Bacterial succession in the thermophilic phase of composting of anaerobic digestates. Waste and Biomass Valorization 11, 841–849. https://doi.org/10.1007/s12649-018-0531-3
  • James, N., Umesh, M., Sarojini, S., Shanmugam, S., Nasif, O., Alharbi, S. A., Chi, L.T.N. and Brindhadevi, K. (2023). Unravelling the potential plant growth activity of halotolerant Bacillus licheniformis NJ04 isolated from soil and its possible use as a green bioinoculant on Solanum lycopersicum L. Environmental Research216, 114620. https://doi.org/10.1016/j.envres.2022.114620
  • Jiang, J., Wang, Y., Yu, D., Yao, X., Han, J., Cheng, R., Cui, H., Yan, G., Zhang, X. and Zhu G. (2021). Garbage enzymes effectively regulated the succession of enzymatic activities and the bacterial community during sewage sludge composting. Bioresour Technology 327, 1–10. https://doi.org/10.1016/j. biort ech.2021.124792  
  • Kanekar, P. P., and Kanekar, S. P. (2022). Thermophilic, thermotolerant microorganisms. In Diversity and Biotechnology of Extremophilic Microorganisms from India , Pp.117-153. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1573-4_4
  • Koneman, E., Winn Jr, W., Allen, S., Janda, W., Procop, G., Schreckenberber, P. and Woods, G. (2012). Diagnóstico microbiológico: texto e atlas colorido. In Diagnóstico microbiológico: texto e atlas colorido (pp. xxxv-1565).
  • Kumar, S,. Stecher, G,. Suleski, M,. Sanderford, M,. Sharma, S., and Tamura, K. (2024). Molecular Evolutionary Genetics Analysis Version 12 for adaptive and green computing. Molecular Biology and Evolution 41, 1-9. https://doi.org/10.1093/molbev/msae263
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  • Li, H., Zhang, M., Zhang, Y., Xu, X., Zhao, Y., Jiang, X., Zhang, R., and Gui, Z. (2023). Chracterization of Cellulose-Degrading Bacteria Isolated from Silkworm Excrement and Optimization of Its Cellulase Production. Polymers 15, 4142. https://doi.org/10.3390/polym15204142
  • Li, J., Sun, L., and Huo, Y. X. (2025). High-Temperature Catalytic Platform Powered by Thermophilic Microorganisms and Thermozymes. Synthetic Biology and Engineering, 3(1), 10001. https://doi.org/10.70322/sbe.2025.10001
  • Liu, G., Zhang, K., Gong, H., Yang, K., Wang, X., Zhou, G., Cui, W., Chen, Y., and Yang, Y. (2023). Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites. Biotechnol Biofuels 16, 130. https://doi.org/10.1186/s13068-023-02375-3
  • Liu, H., Huang, Y., Wang, H., Shen, Z., Qiao, C., Li, R. and Shen, Q. (2020). Enzymatic activities triggered by the succession of microbiota steered fiber degradation and humification during co-composting of chicken manure and rice husk. Journal of environmental management 258, 110014. https://doi.org/10.1016/j.jenvman.2019.110014
  • Logan, N. A. and Vos, P. D. (2015). Bacillus. Bergey's manual of systematics of archaea and bacteria, Pp. 1-163.
  • López, M. J., Jurado, M. M., López-González, J. A., Estrella-González, M. J., Martínez-Gallardo, M. R., Toribio, A., and Suárez-Estrella, F. (2021). Characterization of thermophilic lignocellulolytic microorganisms in composting. Frontiers in microbiology 12, 697480. https://doi.org/10.3389/fmicb.2021.697480
  • Lynd, L., Weimer, P., Van Zyl, W. H. and Pretorius, I. S. (2022). Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and molecular biology reviews 3, 506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002
  • Ma, C., Jin, H. J., Hu, B., Liu, N., Zhang, K., Zhao, J. H. and Zhang, H. Z. (2020). Changes in Enzyme Activity and Bacterial Succession During Sewage Sludge Composting. Nature Environment & Pollution Technology 19, 695-701. https://doi.org/10.46488/NEPT.2020.v19i02.024
  • Mac Faddin, J. (2003). Pruebas bioquimicas para la Identificacion de bacterias de Importancia Clinica. 3era Edicion. Editorial Médica Panamericana. Buenos Aires-Argentina.
  • Madigan, M. T., Martinko, J. M. and Parker, J. (2004). Brock. Biología de los microorganismos.
  • Medison, R. G., Jiang, J., Medison, M. B., Tan, L. T., Kayange, C. D., Sun, Z. and Zhou, Y. (2023). Evaluating the potential of Bacillus licheniformis YZCUO202005 isolated from lichens in maize growth promotion and biocontrol. Heliyon 9 https://doi.org/10.1016/j.heliyon.2023.e20204
  • Moreno, J., López-González, J. A., Arcos-Nievas, M. A., Suárez-Estrella, F., Jurado, M. M., Estrella-González, M. J. and López, M. J. (2021). Revisiting the succession of microbial populations throughout composting: a matter of thermotolerance. Science of The Total Environment 773,145587. https://doi.org/10.1016/j.scitotenv.2021.145587
  • Muras, A., Romero, M., Mayer, C. and Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology 41, 609-627. https://doi.org/10.1080/07388551.2021.1873239
  • Nguyen, V. T., Le, T. H., Bui, X. T., Nguyen, T. N., Vo, T. D. H., Lin, C., Vu, T. M. H., Nguyen, H. H., Nguyen, D. D., Senoro D. B. and Dang, B. T. (2020). Effects of C/N ratios and turning frequencies on the composting process of food waste and dry leaves. Bioresource Technology Reports11, 100527. https://doi.org/10.1016/j.biteb.2020.100527
  • Ni, S., Wu, Y., Zhu, N., Leng, F. and Wang, Y. (2024). Bacillus licheniformis YB06: A Rhizosphere–Genome-Wide Analysis and Plant Growth-Promoting Analysis of a Plant Growth-Promoting Rhizobacterium Isolated from Codonopsis pilosula. Microorganisms12(9), 1861. https://doi.org/10.3390/microorganisms12091861
  • O’Hair, J., Jin, Q., Yu, D., Poe, N., Li, H., Thapa, S., Zhou, S. and Huang, H. (2020). Thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU as an ideal candidate for 2, 3-butanediol production. ACS Sustainable Chemistry & Engineering 8, 11244-11252. https://doi.org/10.1021/acssuschemeng.0c02759
  • Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B. and Dedysh, S. (2015). Bergey's manual of systematics of Archaea and Bacteria (Vol. 410). W. B. Whitman (Ed.). Hoboken, NJ.
  • Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., Lopez de Leon, A., Xiang, H., Gusti, V., Clausen, I. G., Olsen, P. B., Rasmussen, M. D., Andersen, J. T., Jorgenses, P. L., Larsen, T. S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S. D., and Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome biology 5, 1-12. https://doi.org/10.1186/gb-2004-5-10-r77
  • Rodríguez Silva, L. A., y Llenque Díaz, L. (2016). Aislamiento y selección de bacterias celulolíticas a partir de compost de residuos orgánicos. REBIOL 36, 19-28. https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/1310
  • Secretaría de Economía. (2018). NMX-AA-180-SCFI-2018: Que establece los métodos y procedimientos para el tratamiento aerobio de la fracción orgánica de los residuos sólidos urbanos y de manejo especial, así como la información comercial y de sus parámetros de calidad de los productos finales. Diario Oficial de la Federación. https://dof.gob.mx/nota_detalle.php?codigo=5539165&fecha=26/09/2018#gsc.tab=0
  • Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (1985). NMX-AA-52-1985. Protección al ambiente- contaminación del suelo-residuos sólidos municipales-preparación de muestras en el laboratorio para su análisis. Diario Oficial de la Federación. http://legismex.mty.itesm.mx/normas/aa/aa052.pdf
  • Siu-Rodas, Y., de los Angeles Calixto-Romo, M., Guillén-Navarro, K., Sánchez, J. E., Zamora-Briseno, J. A. and Amaya-Delgado, L. (2018). Bacillus subtilis with endocellulase and exocellulase activities isolated in the thermophilic phase from composting with coffee residues. Revista Argentina de Microbiología 50, 234-243. https://doi.org/10.1016/j.ram.2017.08.005
  • Straathof, A. J. (2023). Modelling of end-product inhibition in fermentation. Biochemical Engineering Journal 191, 108796. https://doi.org/10.1016/j.bej.2022.108796
  • Trinidad Bello, A. (2014). Modelos de crecimiento en biología, su significado biológico y selección del modelo por su ajuste [Tesis de licenciatura, Universidad Autónoma Metropolitana - Iztapalapa]. Repositorio Institucional UAM. https://bindani.izt.uam.mx/concern/tesiuams/dj52w481t
  • Van Dyk, J. S. (2009). Characterization of theCellulolytic and Hemicellulolytic System of Bacillus Licheniformis SVD1 and the Isolation and Characterization of a Multi-enzyme Complex. Tesis de Doctorado, Rhodes University.
  • Vásquez, E. and Millones, C. (2023). Isolation and Identification of Bacteria of Genus Bacillus from Composting Urban Solid Waste and Palm Forest in Northern Peru. Microorganisms, 11, 751. https://doi.org/10.3390/microorganisms11030751
  • Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., ... & Whitman, W. B. (Eds.). (2011). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes (Vol. 3). Springer Science & Business Media,
  • Wang, C., & Kuzyakov, Y. (2024). Mechanisms and implications of bacterial-fungal competition for soil resources. The ISME journal, 18(1), wrae073. https://doi.org/10.1093/ismejo/wrae073
  • Waqas, M., Hashim, S., Humphries, U. W., Ahmad, S., Noor, R., Shoaib, M., Naseem, A., Hlaing P. T. and Lin, H. A. (2023). Composting processes for agricultural waste management: a comprehensive review. Processes  11, 731. https://doi.org/10.3390/pr11030731
  • Xu, X., & Kovács, Á. T. (2024). How to identify and quantify the members of the Bacillus genus?. Environmental Microbiology, 26(2), e16593. https://doi.org/10.1111/1462-2920.16593