- Abesinghe, A., Islam, N., Vidanarachchi, J.K., Prakash, S., Silva, K. and Karim, M.A. (2019). Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. International Dairy Journal 90, 1–14. https://doi.org/10.1016/j.idairyj.2018.10.006
- Ahmad, F., Mohammad, Z.H., Zaidi, S. and Ibrahim, S. A. (2023). A comprehensive review on the application of ultrasound for the preservation of fruits and vegetables. Journal of Food Process Engineering 46(6), e14291. https://doi.org/10.1111/jfpe.14291
- Akdeniz, V. and Akalın, A.S. (2022). Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Critical Reviews in Food Science and Nutrition 62, 889–904. https://doi.org/10.1080/10408398.2020.1830027
- Albenzio, M., Campanozzi, A., D’Apolito, M., Santillo, A., Mantovani, M.P. and Sevi, A. (2012). Differences in protein fraction from goat and cow milk and their role on cytokine production in children with cow's milk protein allergy. Small Ruminant Research 105, 202–205. https://doi.org/10.1016/j.smallrumres.2012.02.018
- Albenzio, M., Santillo, A., Ciliberti, M.G., Figliola, L., Caroprese, M., Marino, R. and Polito, A. N. (2016). Milk from different species: Relationship between protein fractions and inflammatory response in infants affected by generalized epilepsy. Journal of Dairy Science 99(7), 5032–5038. https://doi.org/10.3168/jds.2015-10704
- Al Bsoul, A., Magnin, J.P., Commenges-Bernole, N., Gondrexon, N., Willison, J. and Petrier, C. (2010). Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1). Ultrasonics sonochemistry 17(1), 106–110. https://doi.org/10.1016/j.ultsonch.2009.04.005
- Annandarajah, C., Grewell, D., Talbert, J. N., Raman, D. R. and Clark, S. (2018). Batch thermosonication for the reduction of plasmin activity in skim milk. Journal of Food Processing and Preservation 42, e13616. https://doi.org/10.1111/jfpp.13616
- Arvanitoyannis, I.S., Kotsanopoulos, K. V. and Sava A.G. (2017). Use of ultrasounds in the food industry – Methods and effects on quality, safety, and organoleptic characteristics of foods. Critical Reviews in Food Science and Nutrition 57, 109–128. https://doi.org/10.1080/10408398.2013.860514
- Asaithambi, N., Singha, P. and Singh, S.K. (2022). Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. Innovative Food Science and Emerging Technologies 82, 103166. https://doi.org/10.1016/j.ifset.2022.103166
- Astráin-Redín, L., Skipnes, D., Cebrián, G., Álvarez-Lanzarote, I. and Rode, T.M. (2023). Effect of the application of ultrasound to homogenize milk and the subsequent pasteurization by pulsed electric field, high hydrostatic pressure, and microwaves. Foods 12(7), 1457. https://doi.org/10.3390/foods12071457
- Bai, G., Cheng, L., Peng, L., Wu, B., Zhen, Y., Qin, G. and Wang, T. (2023). Effects of ultra-high-temperature processes on metabolite changes in milk. Food Science and Nutrition 11, 3601–3615. https://doi.org/10.1002/fsn3.3350
- Balthazar, C.F., Santillo, A., Guimarães, J. T., Bevilacqua, A., Corbo, M. R., Caroprese, M. and Albenzio, M. (2019). Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrasonics Sonochemistry 51, 241-248. https://doi.org/10.1016/j.ultsonch.2018.10.017
- Bariya, A.R., Rathod, N.B., Patel, A.S., Nayak, J.K.B., Ranveer, R. C., Hashem, A., Abd-Allah, E. F., Ozogul, F., Jambrak, A. R. and Rocha, J. M. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics Sonochemistry 101, 106676. https://doi.org/10.1016/j.ultsonch.2023.106676
- Bastam, M.M., Jalili, M., Pakzad, I., Maleki, A. and Ghafourian, S. (2021). Pathogenic bacteria in cheese, raw and pasteurized milk. Veterinary Medicine and Science 7, 2445–2449. https://doi.org/10.1002/vms3.604
- Bermúdez-Aguirre, D., Mawson, R. and Barbosa-Cánovas, G.V. (2008). Microstructure of fat globules in whole milk after thermo-sonication treatment. Journal of Food Science 73, E325–E332. https://doi.org/10.1111/j.1750-3841.2008.00875.x
- Bermúdez-Aguirre, D., Mawson, R., Versteeg, K. and Barbosa-Cánovas, G.V. (2009a). Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. Journal of Food Quality 32, 283–302. https://doi.org/10.1111/j.1745-4557.2009.00250.x
- Bermúdez-Aguirre, D., Corradini, M.G., Mawson, R. and Barbosa-Cánovas, G.V. (2009b). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science and Emerging Technologies 10, 172–178. https://doi.org/10.1016/j.ifset.2008.11.005
- Bermúdez-Aguirre, D., Mawson, R. and Barbosa-Cánovas, G.V. (2011). Study of possible mechanisms of inactivation of Listeria innocua in thermosonicated milk using scanning electron microscopy and transmission electron microscopy. Journal of Food Processing and Preservation 35(6), 767–777. https://doi.org/10.1111/j.1745-4549.2011.00527.x
- Binti-Maklin, S. N., Binti-Julmohammad, N., Binti-Saallah, S., Mohd-Yaakub, N. B., Bin-Sintang, M. D., Binti-Abd-Rahman, S. N. and Binti-Julmohamad, N. (2025). Effect of sonication time on physical and foaming properties of pasteurized milk. International Dairy Journal 161, 106137. https://doi.org/10.1016/j.idairyj.2024.106137
- Bui, A.T.H., Cozzolino, D., Zisu, B., and Chandrapala, J. (2021). Infrared analysis of ultrasound treated milk systems with different levels of caseins, whey proteins and fat. International Dairy Journal 117, 104983. https://doi.org/10.1016/j.idairyj.2021.104983
- Castillo-Andrade, A.I., Ruiz-Cabrera, M. A., Rivera-Bautista, C., Gonzalez-Garcia, R., Abud-Archila, M. and Grajales-Lagunes, A. (2025). Effect of ultrasound on the aging process, physicochemical properties, and lysosomal enzyme activity of semitendinosus and semimembranosus bovine muscles. Revista Mexicana de Ingenieria Química 24(1), Alim24358. https://doi.org/10.24275/rmiq/Alim24358
- Cadwallader, K.R. and Singh, T.K. (2009). Flavors and off-flavors in milk and dairy products. In L. H. McSweeney P. F. Fox (Eds.), Advanced Dairy Chemistry (3rd ed., Vol. 3, pp. 5–14). Springer.
- Cervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C. A., Zafra-Rojas, Q. Y. and Cruz-Cansino, N. S. (2017). Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry 34, 371–379. https://doi.org/10.1016/j.ultsonch.2016.06.009
- Chandrapala, J., Oliver, C., Kentish, S., Ashokkumar, M. (2012). Ultrasonics in food processing. Ultrasonics Sonochemistry 19, 975–983. https://doi.org/10.1016/j.ultsonch.2012.01.010
- Cimmino, F., Catapano, A., Villano, I., Di Maio, G., Petrella, L., Traina, G. and Cavaliere, G. (2023). Invited review: Human, cow, and donkey milk comparison: Focus on metabolic effects. Journal of Dairy Science 106(5), 3072-3085. https://doi.org/10.3168/jds.2022-22465
- Cregenzán-Alberti, O., Halpin, R. M., Whyte, P., Lyng, J. and Noci, F. (2014). Suitability of ccRSM as a tool to predict inactivation and its kinetics for Escherichia coli, Staphylococcus aureus and Pseudomonas fluorescens in homogenized milk treated by manothermosonication (MTS). Food Control 39, 41–48. https://doi.org/10.1016/j.foodcont.2013.10.007
- Crudo, D., Bosco, V., Cavaglià, G., Mantegna, S., Battaglia, L. and Cravotto, G. (2014). Process intensification in food industry: Hydrodynamic and acoustic cavitation for fresh milk treatment. Agro Food Industry Hi-Tech 25, 55–59
- Cruz-Cansino, N.S., Ramírez-Moreno, E., León-Rivera, J.E., Delgado-Olivares, L., Alanís-García, E., Ariza-Ortega, J.A., Manríquez-Torres, J.J. and Jaramillo-Bustos, D.P. (2015). Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrasonics Sonochemistry 27, 277–286. https://doi.org/10.1016/j.ultsonch.2015.05.040
- Deshpande, V. K. and Walsh, M. K. (2020). Effect of thermosonication in a batch system on the survival of spore-forming bacteria. International Journal of Dairy Technology 73, 486–493. https://doi.org/10.1111/1471-0307.12685
- Deshpande, V. K. and Walsh, M. K. (2021). Effect of thermosonication in a laboratory-scale continuous system on the survival of thermophilic bacteria and indigenous microbiota in milk. International Food Research Journal 28, 63–72. https://doi.org/10.47836/ifrj.28.1.06
- Dhiny, A., Jariyah, J., Agung, L. and Dany, A. (2023). Effect of frequency and duration of thermosonication on the physical, chemical and microbiological quality of cow's milk. Journal of Pure and Applied Agriculture 11, 136–146. https://doi.org/10.21776/ub.jpa.2023.011.03.4
- Ehn, B.M., Ekstrand, B., Bengtsson, U. and Ahlstedt, S. (2004). Modification of IgE binding during heat processing of the cow’s milk allergen β-lactoglobulin. Journal of Agricultural and Food Chemistry 52, 1398–1403. https://doi.org/10.1021/jf0304371
- France, T.C., O’Mahony, J.A. and Kelly, A.L. (2021). The plasmin system in milk and dairy products. In Agents of change: Enzymes in milk and dairy products. Springer International Publishing. 11–55. https://doi.org/10.1007/978-3-030-55482-8_2
- Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C.E., Hasiba, K. and Maeda, Y. (2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics Sonochemistry 11, 57–60. https://doi.org/10.1016/S1350-4177(03)00136-6
- Gaucher, I., Mollé, D., Gagnaire, V. and Gaucheron, F. (2008). Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocolloids 22, 130–143. https://doi.org/10.1016/j.foodhyd.2007.04.007
- Gautam, P.B., Sharma, R., Atbhaiya, Y., Gandhi, K. and Mann, B. (2024). Thermosonication: A technique to inactivate the plasmin system in milk. International Dairy Journal 157, 105997. https://doi.org/10.1016/j.idairyj.2024.105997
- Gregersen, S. B., Wiking, L. and Hammershøj, M. (2019). Acceleration of acid gel formation by high intensity ultrasound is linked to whey protein denaturation and formation of functional milk fat globule-protein complexes. Journal of Food Engineering 254, 17–24. https://doi.org/10.1016/j.jfoodeng.2019.03.004
- Guo, Z. and Jayan, H. (2023). Fast nondestructive detection technology and equipment for food quality and safety. Foods 12(20), 3744. https://doi.org/10.3390/foods12203744
- Hassan, Z.M.R., Fakhr, H.M., Din, E., Ali, A.A., Mehanna, N.S. and El-Messery, T. M. (2013). Interaction of some low molecular weight phenolics with milk proteins. World Applied Sciences Journal 23, 182–187. https://doi.org/10.5829/idosi.wasj.2013.23.02.13057
- Herceg, Z., Režek-Jambrak, A., Lelas, V. and Mededovic-Thagard, S. (2012). The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technology and Biotechnology 50, 46–52. https://hrcak.srce.hr/78997
- Hemar, Y., Xu, C., Wu, S. and Ashokkumar, M. (2020). Size reduction of “reformed casein micelles” by high-power ultrasound and high hydrostatic pressure. Ultrasonics sonochemistry 63, 104929. https://doi.org/10.1016/j.ultsonch.2019.104929
- Hernández-Falcón, T.A., Monter-Arciniega, A., Cruz-Cansino, N.S., Alanís-García, E., Rodríguez-Serrano, G.M., Castañeda-Ovando, A., García-Garibay, M., Ramírez-Moreno, E. and Jaimez-Ordaz, J. (2018). Effect of thermoultrasound on aflatoxin M1 levels, physicochemical and microbiological properties of milk during storage. Ultrasonics Sonochemistry 48, 396–403. https://doi.org/10.1016/j.ultsonch.2018.06.018
- Jiang, Z., Wang, Y., Bai, S., Bai, C., Tu, Z., Li, H. and Qiu, L. (2024). The viable but non-culturable (VBNC) status of Shewanella putrefaciens (S. putrefaciens) with thermosonication (TS) treatment. Ultrasonics Sonochemistry 109, 107008. https://doi.org/10.1016/j.ultsonch.2024.107008
- Karlović, S., Bosiljkov, T., Brnčić, M., Semenski, D., Dujmić, F., Tripalo, B. and Ježek, D. (2014). Reducing fat globules particle-size in goat milk: Ultrasound and high hydrostatic pressures approach. Chemical and Biochemical Engineering Quarterly 28(4), 499–507. https://doi.org/10.15255/CABEQ.2014.19400
- Kashaninejad, M. and Razai, S. M. A. (2020). Influence of thermosonication treatment on the average size of fat globules, emulsion stability, rheological properties and color of camel milk cream. LWT – Food Science and Technology 132, 109852. https://doi.org/10.1016/j.lwt.2020.109852
- Kentish, S. and Feng, H. (2014). Applications of power ultrasound in food processing. Annual review of food science and technology 5(1), 263-284. https://doi.org/10.1146/annurev-food-030212-182537
- Li, J., Wang, J., Zhao, X., Wang, W., Liu, D., Chen, S., Xingqian, Y. and Ding, T. (2019). Inactivation of Staphylococcus aureus and Escherichia coli in milk by different processing sequences of ultrasound and heat. Journal of Food Safety 39, e12614. https://doi.org/10.1111/jfs.12614
- Lin, L., Wang, X., Li, C. and Cui, H. (2019). Inactivation mechanism of E. coli O157: H7 under ultrasonic sterilization. Ultrasonics Sonochemistry 59, 104751. https://doi.org/10.1016/j.ultsonch.2019.104751
- Liu, X.T., Zhang, H., Wang, F., Luo, J., Guo, H. Y. and Ren, F.Z. (2014). Rheological and structural properties of differently acidified and renneted milk gels. Journal of dairy science 97(6), 3292–3299. https://doi.org/10.3168/jds.2013-7568
- Loan, L.T.K., Vinh, B. T. and Tai, N.V. (2024). Impact of ultrasound-assisted process on enzymatic extraction of polyphenols from purple rice bran in Vietnam: Experimental kinetics and innovative artificial approach. Revista Mexicana de Ingeniería Química 23(3), 1. https://doi.org/10.24275/rmiq/Alim24310
- Lucey, J. A., Wilbanks, D.J. and Horne, D.S. (2022). Impact of heat treatment of milk on acid gelation. International Dairy Journal 125, 105222. https://doi.org/10.1016/j.idairyj.2021.105222
- Magalhães, I.S., Guimarães, A.D.B., Tribst, A.A.L., de Oliveira, E.B. and Júnior, B. R. D. C. L. (2022). Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Research International 157, 111310. https://doi.org/10.1016/j.foodres.2022.111310
- Mahmoud, M.Z., Fagiry, M.A., Davidson, R. and Abdelbasset, W.K. (2022). The benefits, drawbacks, and potential future challenges of the most commonly used ultrasound-based hurdle combinations technologies in food preservation. Journal of Radiation Research and Applied Sciences 15, 206–212. https://doi.org/10.1016/j.jrras.2022.03.006
- Mahmoud, M.Z., Davidson, R., Abdelbasset, W.K. and Fagiry, M.A. (2022). The new achievements in ultrasonic processing of milk and dairy products. Journal of Radiation Research and Applied Sciences 15(1), 199–205. https://doi.org/10.1016/j.jrras.2022.03.005
- Marangoni, F., Pellegrino, L., Verduci, E., Ghiselli, A., Bernabei, R., Calvani, R. and Poli, A. (2019). Cow’s milk consumption and health: a health professional’s guide. Journal of the American College of Nutrition 38(3), 197–208. https://doi.org/10.1080/07315724.2018.1491016
- Marchesini, G., Fasolato, L., Novelli, E., Balzan, S., Contiero, B., Montemurro, F., Andrighetto, I. and Segato, S. (2015). Ultrasonic inactivation of microorganisms: A compromise between lethal capacity and sensory quality of milk. Innovative Food Science and Emerging Technologies 29, 215–221. https://doi.org/10.1016/j.ifset.2015.03.015
- Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P. and Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT- Food Science and Technology 152, 112272. https://doi.org/10.1016/j.lwt.2021.112272
- Mortazavi, S.M., Sani, A.M. and Mohseni, S. (2015). Destruction of AFT by ultrasound treatment. Journal of Applied Environmental and Biological Sciences 4, 198–202.
- Nascimento, J.C.N., Salgado, M.J.G., Gutierrez Alzate, K., de Alencar, J.C.G., Rosario, I.L. D.S., da Silva, J.G. and da Costa, M.P. (2023). Effect of Sonication Associated with Pasteurization on the Inactivation of Methicillin-Resistant Staphylococcus aureus in Milk Cream. Applied Sciences 13(22), 12093.
- Ninković, M., Milićević, V., Radojičić, S., Bugarski, D. and Stević, N. (2024). Presence of Mycoplasma bovis in bulk tank milk and associated risk factor analysis in Serbian dairy farms. Pathogens 13(4), 302. https://doi.org/10.3390/pathogens13040302
- Obando-Galicia, Y. T., Martínez-de Jesús, G. and Totosaus, A. (2024) Assisted (ultrasound or high shear impeller) soybean oil/lecithin extraction of polyphenolic compounds from red cactus pear peel. Revista Mexicana de Ingeniería Química 23(2), Alim24237. https://doi.org/10.24275/rmiq/Alim24237
- Ojha, K.S., Mason, T.J., O’Donnell, C.P., Kerry, J.P. and Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics sonochemistry 34, 410–417. https://doi.org/10.1016/j.ultsonch.2016.06.001
- Owens, S.L., Brewer, J.L. and Rankin, S.A. (2001). Influence of bacterial cell population and pH on the color of nonfat milk. LWT – Food Science and Technology 34, 329–333. https://doi.org/10.1006/fstl.2001.0781
- Parreiras, P.M., Vieira-Nogueira, J.A., Rodrigues, L., Passos, M. C., Gomes, N.R., Breguez, G.S., Falco, T.S., Bearzoti, E. and Menezes, C.C. (2020). Effect of thermosonication on microorganisms, the antioxidant activity and the retinol level of human milk. Food Control 113, 107172. https://doi.org/10.1016/j.foodcont.2020.107172
- Pérez-Andrés, J.M., Charoux, C.M.G., Cullen, P.J. and Tiwari, B.K. (2018). Chemical modifications of lipids and proteins by non-thermal food processing technologies. Journal of Agricultural and Food Chemistry 66, 5041–5054. https://doi.org/10.1021/acs.jafc.7b06055
- Qin, X., Yang, R., Zhong, J., Shabani, K.I. and Liu, X. (2018). Ultrasound-assisted preparation of a human milk fat analog emulsion: Understanding factors affecting formation and stability. Journal of Food Engineering 238, 103-111. https://doi.org/10.1016/j.jfoodeng.2018.06.011
- Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G. and Wang, F. (2023). Ultrasound-assisted enzymatic protein hydrolysis in food processing: Mechanism and parameters. Foods 12(21), 4027. https://doi.org/10.3390/foods12214027
- Ragab, E.S., Lu, J., Pang, X.Y., Nassar, K.S., Yang, B.Y., Zhang, S.W. and Lv, J.P. (2019). Effect of thermosonication process on physicochemical properties and microbial load of goat’s milk. Journal of Food Science and Technology 56, 5309–5316. https://doi.org/10.1007/s13197-019-03994-0
- Ramos-Villacob, V., Figueroa-Flórez, J. A., Salcedo-Mendoza, J.G., Hernandez-Ruydíaz, J. E. and Romero-Verbel, L.A. (2024). Development of modified cassava starches by ultrasound-assisted amylose/lauric acid complex formation. Revista Mexicana de Ingeniería Química 23(1) 1–15. https://doi.org/10.24275/rmiq/Alim24109
- Reiter, M., Reitmaier, M., Haslbeck, A. and Kulozik, U. (2023). Acid gelation functionality of casein micelles in concentrated state: Influence of calcium supplementation or chelation combined with enzymatic stabilization. Food Hydrocolloids 143, 108927. https://doi.org/10.1016/j.foodhyd.2023.108927
- Shanmugam, A., Chandrapala, J. and Ashokkumar, M. (2012). The effect of ultrasound on the physical and functional properties of skim milk. Innovative Food Science and Emerging Technologies 16, 251–258. https://doi.org/10.1016/j.ifset.2012.06.005
- Sharma, P., Oey, I., Bremer, P. and Everett, D. W. (2014). Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal 39, 146–156. https://doi.org/10.1016/j.idairyj.2014.06.003
- Shen, X., Shao, S. and Guo, M. (2017). Ultrasound-induced changes in physical and functional properties of whey proteins. International Journal of Food Science and Technology 52, 381–388. https://doi.org/10.1111/ijfs.13292
- Shokri, S., Javanmardi, F., Mohammadi, M. and Khaneghah, A.M. (2022). Effects of ultrasound on the techno-functional properties of milk proteins: A systematic review. Ultrasonics Sonochemistry 83, 105938. https://doi.org/10.1016/j.ultsonch.2022.105938
- Silva, M., Zisu, B. and Chandrapala, J. (2018). Influence of low-frequency ultrasound on the physico-chemical and structural characteristics of milk systems with varying casein to whey protein ratios. Ultrasonics Sonochemistry 49, 268–276. https://doi.org/10.1016/j.ultsonch.2018.08.015
- Song, B., Zhang, Y., Yang, B., Zhu, P., Pang, X., Xie, N. and Lv, J. (2021). Effect of different temperature-controlled ultrasound on the physical and functional properties of micellar casein concentrate. Foods 10(11), 2673. https://doi.org/10.3390/foods10112673
- Stratakos, A.C., Inguglia, E.S., Linton, M., Tollerton, J. and Murphy, L., Corcionivoschi, N., Tiwari, B. K. (2019). Effect of high-pressure processing on the safety, shelf life and quality of raw milk. Innovative Food Science and Emerging Technologies 52, 325–333. https://doi.org/10.1016/j.ifset.2019.01.009
- Tavsanli, H., Aydin, M., Ede, Z.A. and Cibik, R. (2022). Influence of ultrasound application on the microbiota of raw goat milk and some food pathogens including Brucella melitensis. Food Science and Technology International 28(7), 634–640. https://doi.org/10.1177/10820132211049601
- Tsukamoto, I., Constantinoiu, E., Furuta, M., Nishimura, R. and Maeda, Y. (2004). Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae, calorimetric analysis. Ultrasonics Sonochemistry 11, 167–172. https://doi.org/10.1016/j.ultsonch.2004.01.014
- Ugarte-Romero, E., Feng, H. and Martin, S.E. (2007). Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. Journal of Food Science 72, M103–M107. https://doi.org/10.1111/j.1750-3841.2007.00340.x
- Ullah, I., Naz, S., Khattak, U. S., Saeed, M., ul Akbar, N. and Rauf, S. (2024). Prevalence and associated risk factors of Brucella abortus and Brucella melitensis in humans and cattle populations: A comprehensive study. Comparative Immunology, Microbiology and Infectious Diseases 115, 102276. https://doi.org/10.1016/j.cimid.2024.102276
- Vadillo-Rodríguez, V. and Dutcher, J.R. (2011). Viscoelasticity of the bacterial cell envelope. Soft Matter, 7(9), 4101-4110.
- Vélez, M. A., Perotti, M.C., Candioti, M.C., Bergamini, C.V. and Hynes, E.R. (2016). Plasmin and coagulant activities in a minicurd model system: Study of technological parameters. Journal of Dairy Science 99(9), 7053-7062. https://doi.org/10.3168/jds.2015-10799
- Vijayakumar, S., Grewell, D., Annandarajah, C., Benner, L. and Clark, S. (2015). Quality characteristics and plasmin activity of thermosonicated skim milk and cream. Journal of Dairy Science 98, 6678–6691. https://doi.org/10.3168/jds.2015-9429
- Villamiel, M. and De Jong, P. (2000). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase® Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering 45, 171–179. https://doi.org/10.1016/S0260-8774(00)00059-5
- Wang, Y., Guo, M., Wu, P., Fan, K., Zhang, W., Chen, C. and Yu, J. (2024). New insights into the destabilization of fat globules in ultra-instantaneous UHT milk induced by added plasmin: Molecular mechanisms and the effect of membrane structure on plasmin action. Colloids and Surfaces B: Biointerfaces 240, 113987. https://doi.org/10.1016/j.colsurfb.2024.113987
- Wang, J., Saxena, R., Vanga, S.K. and Raghavan, V. (2022). Effects of microwaves, ultrasonication, and thermosonication on the secondary structure and digestibility of bovine milk protein. Foods 11, 138. https://doi.org/10.3390/foods11020138
- Yang, Y., Wang, Z., Hu, D., Xiao, K. and Wu, J.Y. (2018). Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocolloids 79, 189–196. https://doi.org/10.1016/j.foodhyd.2017.11.051
- Yuno-Ohta, N., Shimonomura, N., Hoshi, Y., Leocmach, M., Hori, K. and Ohta, H. (2021). Characterization of the gelation and resulting network of a mixed-protein gel derived from sodium caseinate and ovalbumin in the presence of glucono-δ-lactone. Colloids and Surfaces B: Biointerfaces 198, 111472. https://doi.org/10.1016/j.colsurfb.2020.111472
- Zafra-Rojas, Q. Y., Jiménez-Hernández, J. L., Olloqui, E. J., Cruz-Cansino, N. S., Alanís-García, E., Ramírez-Moreno, E., Ariza-Ortega, J. A. and Moreno-Seceña, J. C. (2023). Optimization of thermoultrasound process of soursop (Annona muricata) nectar and comparison of its physicochemical properties and in vitro bioaccessibility of antioxidants with pasteurized sample. Food Technology and Biotechnology 61, 536–548. https://doi.org/10.17113/ftb.61.04.23.8180
- Zhang, Y., Li, Y., Li, S., Zhang, H. and Ma, H. (2018). In situ monitoring of the effect of ultrasound on the sulfhydryl groups and disulfide bonds of wheat gluten. Molecules 23(6), 1376. https://doi.org/10.3390/molecules23061376
- Zlatev, Z., Pehlivanova, T., Dimitrova, A., Baycheva, S., Taneva, I. and Keremidchieva, K. (2018). Development of an ultrasonic device for quality evaluation of yogurt. Engineering Review 38, 279–287. https://doi.org/10.30765/er.38.3.4
- Zhao, Y., Ma, Q., Zhou, T., Liu, L., Wang, Y., Li, X. and Kouame, K. J. E. P. (2024). Ultrasound-induced structural changes of different milk fat globule membrane protein-phospholipids complexes and their effects on physicochemical and functional properties of emulsions. Ultrasonics Sonochemistry 103, 106799. https://doi.org/10.1016/j.ultsonch.2024.106799
- Zhou, J., Sheng, L., Lv, R., Liu, D., Ding, T. and Liao, X. (2021). Application of a 360-degree radiation thermosonication technology for the inactivation of Staphylococcus aureus in milk. Frontiers in Microbiology 12, 771770. https://doi.org/10.3389/fmicb.2021.771770
Zupanc, M., Pandur, Ž., Perdih, T. S., Stopar, D., Petkovšek, M. and Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry 57, 147–165. https://doi.org/10.1016/j.ultsonch.2019.05.009
|