Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Sim2387


Practical approach to identify electrochemical parameter in aqueous Potassium ferricyanide by solving the multi-variable Cottrell equation via genetic algorithms

W.J. Pech-Rodríguez, F.J. Rodríguez-Varela, C.A. Calles-Arriaga, E.N. Armendáriz-Mireles

https://doi.org/10.24275/rmiq/Sim2387

Supplementary material


Abstract

 

Parameters optimization of emerging electrochemical processes is crucial for improving efficiency and cost. Herein, a procedure based on the genetic algorithms (GA) search method was proposed to solve the fundamental Cottrell equation. First, a basic GA background is provided to help students and researchers understand the basic concepts of such evolutional algorithms and how this can be applied in their field of expertise. Then, the study was conducted considering measured chronoamperometry data of potassium ferricyanide, as electroactive species, at the platinum working electrode. The number of electrons (n), species concentration (C), and diffusion coefficient (D) were the three unknown solved variables that were obtained through optimization. The crossover function and population size effect were deeply studied on the final value of these electrochemical parameters. The results show that Intermediate and Heuristic crossover stochastic functions had the best performance in solving the multi-objective function, according to the root mean square error (RMSE) outcome. Thus, it was concluded that GA is a feasible tool that can be adopted to solve complex and multivariable problems in electrochemistry. Furthermore, it should be highlighted that GA can be adopted to determine chemical and electrochemical parameters in emerging technologies such as energy conversion devices.

Keywords: Genetic algorithm, chronoamperometric, Cottrell equation, crossover functions, heuristic.

 

References

  • Bărbulescu, A., Șerban, C., & Indrecan, M.-L. (2021). Computing the Beta Parameter in IDW Interpolation by Using a Genetic Algorithm. Water, 13(6). doi:10.3390/w13060863
  • Belgodere, C., Dubessy, J., Vautrin, D., Caumon, M.-C., Sterpenich, J., Pironon, J., . . . Birat, J.-P. (2015). Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: impact of salinity (NaCl). Journal of Raman Spectroscopy, 46(10), 1025-1032. doi:https://doi.org/10.1002/jrs.4742
  • Black, A. W., Zhang, W., Reid, G., & Bartlett, P. N. (2022). Diffusion in weakly coordinating solvents. Electrochimica Acta, 425, 140720. doi:https://doi.org/10.1016/j.electacta.2022.140720
  • Chayambuka, K., Mulder, G., Danilov, D. L., & Notten, P. H. L. (2021). Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models. Journal of Power Sources Advances, 9, 100056. doi:https://doi.org/10.1016/j.powera.2021.100056
  • Cheah, M. H., & Chernev, P. (2021). Electrochemical oxidation of ferricyanide. Scientific Reports, 11(1), 23058. doi:10.1038/s41598-021-02355-3
  • Choi, W., Shin, H.-C., Kim, J. M., Choi, J.-Y., & Yoon, W.-S. (2020). Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol, 11(1), 1-13. doi:10.33961/jecst.2019.00528
  • Deep, K., & Thakur, M. (2007). A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation, 188(1), 895-911. doi:https://doi.org/10.1016/j.amc.2006.10.047
  • Deng, W., Zhang, P., Seger, B., & Gong, J. (2022). Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide. Nature Communications, 13(1), 803. doi:10.1038/s41467-022-28436-z
  • Gallego-Martínez, R., Muñoz-Gutiérrez, F. J., & Rodríguez-Gómez, A. (2022). Trajectory optimization for exposure to minimal electromagnetic pollution using genetic algorithms approach: A case study. Expert Systems with Applications, 207, 118088. doi:https://doi.org/10.1016/j.eswa.2022.118088
  • Gao, T., & Lu, W. (2021). Machine learning toward advanced energy storage devices and systems. iScience, 24(1), 101936. doi:https://doi.org/10.1016/j.isci.2020.101936
  • Geng, Z., Chien, Y.-C., Lacey, M. J., Thiringer, T., & Brandell, D. (2022). Validity of solid-state Li+ diffusion coefficient estimation by electrochemical approaches for lithium-ion batteries. Electrochimica Acta, 404, 139727. doi:https://doi.org/10.1016/j.electacta.2021.139727
  • Gunawardena, G., Hills, G., Montenegro, I., & Scharifker, B. (1982). Electrochemical nucleation: Part I. General considerations. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 138(2), 225-239. doi:https://doi.org/10.1016/0022-0728(82)85080-8
  • Guo, Y., He, D., Xie, A., Qu, W., Tang, Y., Zhou, L., & Zhu, R. (2019). The Electrochemical Oxidation of Hydroquinone and Catechol through a Novel Poly-geminal Dicationic Ionic Liquid (PGDIL)–TiO2 Composite Film Electrode. Polymers, 11(11).  doi:10.3390/polym11111907
  • Hakimi, D., Oyewola, D. O., Yahaya, Y., Bolarin, G. J. J. o. A. S., & Management, E. (2016). Comparative analysis of genetic crossover operators in knapsack problem. 20, 593-596.
  • Hasegawa, G., Kuwata, N., Tanaka, Y., Miyazaki, T., Ishigaki, N., Takada, K., & Kawamura, J. (2021). Tracer diffusion coefficients of Li+ ions in c-axis oriented LixCoO2 thin films measured by secondary ion mass spectrometry. Physical Chemistry Chemical Physics, 23(3), 2438-2448. doi:10.1039/D0CP04598E
  • Hassanat, A., Almohammadi, K., Alkafaween, E. a., Abunawas, E., Hammouri, A., & Prasath, V. B. S. (2019). Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Information, 10(12). doi:10.3390/info10120390
  • Hii, C., Wright, A., & Willis, M. (2014). Utilizing a Genetic Algorithm to Elucidate Chemical Reaction Networks: An Experimental Case Study. International Journal of Chemical Engineering and Applications, 5, 516-520. doi:10.7763/IJCEA.2014.V5.439
  • Hvattum, L. M. (2022). Adjusting the order crossover operator for capacitated vehicle routing problems. Computers & Operations Research, 148, 105986. doi:https://doi.org/10.1016/j.cor.2022.105986
  • Hyk, W., Nowicka, A., & Stojek, Z. (2002). Direct Determination of Diffusion Coefficients of Substrate and Product by Chronoamperometric Techniques at Microelectrodes for Any Level of Ionic Support. Analytical Chemistry, 74(1), 149-157. doi:10.1021/ac0109117
  • Iamprasertkun, P., Ejigu, A., & Dryfe, R. A. W. (2020). Understanding the electrochemistry of “water-in-salt” electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Chemical Science, 11(27), 6978-6989. doi:10.1039/D0SC01754J
  • Ikeuchi, H., & Kanakubo, M. (2000). Determination of diffusion coefficients of the electrode reaction products by the double potential step chronoamperometry at small disk electrodes. Journal of Electroanalytical Chemistry, 493(1), 93-99. doi:https://doi.org/10.1016/S0022-0728(00)00327-2
  • Iranzo, A., Navas, S. J., Rosa, F., & Berber, M. R. (2021). Determination of time constants of diffusion and electrochemical processes in Polymer Electrolyte Membrane Fuel Cells. Energy, 221, 119833. doi:https://doi.org/10.1016/j.energy.2021.119833
  • Kannan, G., Sasikumar, P., & Devika, K. (2010). A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Applied Mathematical Modelling, 34(3), 655-670. doi:https://doi.org/10.1016/j.apm.2009.06.021
  • Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(5), 8091-8126. doi:10.1007/s11042-020-10139-6
  • Kim, M., Robertson, D. C., Dees, D. W., Yao, K. P., Lu, W., Trask, S. E., . . . Bloom, I. (2021). Estimating the Diffusion Coefficient of Lithium in Graphite: Extremely Fast Charging and a Comparison of Data Analysis Techniques. Journal of the Electrochemical Society, 168(7), 070506. doi:10.1149/1945-7111/ac0d4f
  • Koohestani, B. (2020). A crossover operator for improving the efficiency of permutation-based genetic algorithms. Expert Systems with Applications, 151, 113381. doi:https://doi.org/10.1016/j.eswa.2020.113381
  • Lara-Cerecedo, L. O., Pitalúa-Díaz, N., & Hinojosa-Palafox, J. F. (2023). Estudio comparativo de la predicción de energía eléctrica de un sistema fotovoltaico utilizando los sistemas inteligentes ANFIS y ANFIS-GA. Revista Mexicana de Ingeniera Quimica, 22(1). doi:10.24275/rmiq/Ener2956
  • Li, S., & Zhao, P. (2021). Big data driven vehicle battery management method: A novel cyber-physical system perspective. Journal of Energy Storage, 33, 102064. doi:https://doi.org/10.1016/j.est.2020.102064
  • Lu, J., Wang, M., Deng, X., Yan, J., Yun, J., & Jiao, S. (2019). Evaluation of K3Fe(CN)6 on Deposition Behavior and Structure of Electroless Copper Plating. Electrochemistry, 87(4), 214-219. doi:10.5796/electrochemistry.19-00010
  • Maghawry, A., Hodhod, R., Omar, Y., & Kholief, M. (2021). An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft Computing, 25(1), 389-405. doi:10.1007/s00500-020-05149-3
  • Menolasina, S. (2005). Electrochemical studies of Fe(CN)64-/Fe(CN)63- on gold ultramicroelectrodes varying the concentrations of KF as supporting electrolyte. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 28, 159-168.
  • Nguyen, T. Q., & Breitkopf, C. (2018). Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. Journal of the Electrochemical Society, 165(14), E826-E831. doi:10.1149/2.1151814jes
  • Nguyen, T. T., Nguyen, T. T., & Tran, T. N. (2022). Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization. Neural Computing and Applications. doi:10.1007/s00521-022-07142-3
  • Oladimeji, M. O., Turkey, M., & Dudley, S. (2017). HACH: Heuristic Algorithm for Clustering Hierarchy protocol in wireless sensor networks. Applied Soft Computing, 55, 452-461. doi:https://doi.org/10.1016/j.asoc.2017.02.016
  • Ouamri, M. A., & Azni, M. (2019). Overshooting and Cost Minimization in LTE Cellular Network Using Non-dominate Sorting Genetic Algorithm based on Laplace Crossover. Paper presented at the Proceedings of the 3rd International Conference on Future Networks and Distributed Systems, Paris, France. https://doi.org/10.1145/3341325.3341997
  • Peng, Y., Shinde, P. S., & Reddy, R. G. (2021). Diffusion coefficient and nucleation density studies on electrochemical deposition of aluminum from chloroaluminate ionic liquid electrolytes. Journal of Electroanalytical Chemistry, 895, 115363. doi:https://doi.org/10.1016/j.jelechem.2021.115363
  • Pine-Instrument-Company. (2000). Educator’s Reference Guide for Electrochemistry. Retrieved from Grove City, Pennsylvania: https://www.pineresearch.com/echem/files/LMCBP-PROF1.pdf
  • Pinho, R., & Saraiva, F. (2020, 19-24 July 2020). A Comparison of Crossover Operators in Genetic Algorithms for Switch Allocation Problem in Power Distribution Systems. Paper presented at the 2020 IEEE Congress on Evolutionary Computation (CEC).
  • Postolov, B., Hinov, N., Iliev, A., & Dimitrov, D. (2022). Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm. Energies, 15(16).  doi:10.3390/en15165989
  • Pourreza Movahed, Z., Kabiri, M., Ranjbar, S., & Joda, F. (2020). Multi-objective optimization of life cycle assessment of integrated waste management based on genetic algorithms: A case study of Tehran. Journal of Cleaner Production, 247, 119153. doi:https://doi.org/10.1016/j.jclepro.2019.119153
  • Reiser, D., von Keudell, A., & Urbanietz, T. (2021). Determining Chemical Reaction Systems in Plasma-Assisted Conversion of Methane Using Genetic Algorithms. Plasma Chemistry and Plasma Processing, 41(3), 793-813. doi:10.1007/s11090-021-10159-6
  • Rezaeipanah, A., Matoori, S. S., & Ahmadi, G. (2021). A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search. Applied Intelligence, 51(1), 467-492. doi:10.1007/s10489-020-01833-x
  • Roeva, O., Fidanova, S., & Paprzycki, M. (2013, 8-11 Sept. 2013). Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. Paper presented at the 2013 Federated Conference on Computer Science and Information Systems.
  • Saw, E. N., Blanc, N., Kanokkanchana, K., & Tschulik, K. (2018). Time-resolved impact electrochemistry - A new method to determine diffusion coefficients of ions in solution. Electrochimica Acta, 282, 317-323. doi:https://doi.org/10.1016/j.electacta.2018.06.013
  • Shao, J., Li, G., Zhang, Z., Ye, J., Hu, Z., Zhang, Z., . . . Li, J. (2021). Measurements of diffusion characteristics of hydroxyl radical with laser-induced fluorescence at high temperature. Optics Communications, 488, 126810. doi:https://doi.org/10.1016/j.optcom.2021.126810
  • Sikeyi, L. L., Ntuli, T. D., Mongwe, T. H., Maxakato, N. W., Carleschi, E., Doyle, B. P., . . . Maubane-Nkadimeng, M. S. (2021). Microwave assisted synthesis of nitrogen doped and oxygen functionalized carbon nano onions supported palladium nanoparticles as hybrid anodic electrocatalysts for direct alkaline ethanol fuel cells. International Journal of Hydrogen Energy, 46(18), 10862-10875. doi:https://doi.org/10.1016/j.ijhydene.2020.12.154
  • Sipper, M., Fu, W., Ahuja, K., & Moore, J. H. (2018). Investigating the parameter space of evolutionary algorithms. BioData Mining, 11(1), 2. doi:10.1186/s13040-018-0164-x
  • Skobiej, B., & Jardzioch, A. (2019, 2019//). Selected Aspects of Crossover and Mutation of Binary Rules in the Context of Machine Learning. Paper presented at the Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018, Cham.
  • Song, L., Zhang, K., Liang, T., Han, X., & Zhang, Y. (2020). Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. Journal of Energy Storage, 32, 101836. doi:https://doi.org/10.1016/j.est.2020.101836
  • ul Haq, E., Ahmad, I., & Almanjahie, I. M. (2020). A Novel Parent Centric Crossover with the Log-Logistic Probabilistic Approach Using Multimodal Test Problems for Real-Coded Genetic Algorithms. Mathematical Problems in Engineering, 2020, 2874528. doi:10.1155/2020/2874528
  • Wang, J., Ding, R., Cao, F., Li, J., Dong, H., Shi, T., . . . Liu, J. (2022). Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells. Chemical Engineering Journal, 442, 136064. doi:https://doi.org/10.1016/j.cej.2022.136064
  • Wang, J., Zhang, M., Ersoy, O. K., Sun, K., & Bi, Y. (2019). An Improved Real-Coded Genetic Algorithm Using the Heuristical Normal Distribution and Direction-Based Crossover. Computational Intelligence and Neuroscience, 2019, 4243853. doi:10.1155/2019/4243853
  • Wang, L., Chen, Z., Guo, Y., Hu, W., Chang, X., Wu, P., . . . Li, J. (2021). Accurate Solar Cell Modeling via Genetic Neural Network-Based Meta-Heuristic Algorithms. 9. doi:10.3389/fenrg.2021.696204
  • Wang, Q., Shang, M., Zhang, Y., Yang, Y., & Wang, Y. (2018). Rate-Limiting Step in Batteries with Metal Oxides as the Energy Materials. ACS Applied Materials & Interfaces, 10(8), 7162-7170. doi:10.1021/acsami.7b19541
  • Zaki, M., Shafie, E. E., Abdel-Gawad, S. A., Fekry, A. M., & Shehata, M. (2022). Sensitive detection for nicotine using nickel/copper nanoparticle–modified carbon paste electrode. Ionics. doi:10.1007/s11581-022-04649-6
  • Zhang, X., Wang, D., Chen, H., Mao, W., Liu, S., Liu, G., & Dou, Z. (2020). Improved Laplacian Biogeography-Based Optimization Algorithm and Its Application to QAP. Complexity, 2020, 7824785. doi:10.1155/2020/7824785
  • Zhang, Y., Tang, Q., Zhang, Y., Wang, J., Stimming, U., & Lee, A. A. (2020). Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nature Communications, 11(1), 1706. doi:10.1038/s41467-020-15235-7
  • Zhu, S., Sun, X., Gao, X., Wang, J., Zhao, N., & Sha, J. (2019). Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. Journal of Electroanalytical Chemistry, 855, 113627. doi:https://doi.org/10.1016/j.jelechem.2019.113627